Subscribe to RSS
DOI: 10.1055/a-1090-0475
Biotechnologisch hergestellte Megakaryozyten und Thrombozyten
Bioengineered Megakaryocytes and Platelets in Vitro
Zusammenfassung
Angesichts der ständig steigenden Nachfrage nach Thrombozyten zielen neue Zell-Pharming-Strategien auf die Generierung von Megakaryozyten und Thrombozyten in vitro ab. Dieser Übersichtsartikel analysiert den aktuellen Stand der Methoden zur biotechnologischen Herstellung von Megakaryozyten und Thrombozyten und zeigt die Erarbeitung von Strategien, die darauf abzielen, diese Methoden in die Klinik zu bringen.
Abstract
The continuously increasing demand on platelets and the current trend to a decrease in blood donor numbers poses a relevant challenge to the field of platelet transfusion. Further problems associated with immunological features, quality, contamination, sensitivity of platelets to manipulations, as well as very short shelf life of the donor material may compromise the therapeutic effect. Thus, novel highly desirable cell pharming strategies aim at the in vitro generation of megakaryocytes and platelets. This review focuses on the analysis of the current status of methods to generate bioengineered megakaryocytes and platelets as well as defines the strategies aimed at bringing these methods to clinics.
-
Der einzige wirksame therapeutische Ansatz zur Behandlung einer schweren Thrombozytopenie ist derzeit die Thrombozytentransfusion.
-
Zell-Pharming-Strategien haben die Generierung von Megakaryozyten und Thrombozyten in vitro zum Ziel.
-
Um das Ziel eines klinisch relevanten In-vitro-Megakaryozyten-Bioengineerings – die Lieferung funktioneller Thrombozyten in geeigneter Qualität und in benötigten Mengen in gebrauchsfertiger Form – zu erreichen, sind 5 Schlüsselstrategien erfolgreich:
-
Steigerung der Ausbeute,
-
Erweiterung der Produktionskapazität,
-
Biobanking,
-
Einhaltung und Anwendung von GLP/GMP (Good Laboratory Practice/Good Manufacturing Practice) durch die o. g. 3 Strategien,
-
Identifizierung der tatsächlichen therapeutischen Strategie für die klinische Anwendung.
-
-
Der Artikel fasst Hintergründe, Fortschritte und den aktuellen Stand der Technologien zur biotechnologischen Ex-vivo-Herstellung von Megakaryozyten und Thrombozyten zusammen.
Publication History
Article published online:
25 August 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Stuttgart · New York
-
Literatur
- 1 Kaushansky K. Historical review: megakaryopoiesis and thrombopoiesis. Blood 2008; 111: 981-986 doi:10.1182/blood-2007-05-088500
- 2 Cho J. A paradigm shift in platelet transfusion therapy. Blood 2015; 125: 3523-3525 doi:10.1182/blood-2015-04-640649
- 3 Nakamura S, Takayama N, Hirata S. et al. Expandable megakaryocyte cell lines enable clinically applicable generation of platelets from human induced pluripotent stem cells. Cell Stem Cell 2014; 14: 535-548 doi:10.1016/j.stem.2014.01.011
- 4 Moreau T, Evans AL, Vasquez L. et al. Large-scale production of megakaryocytes from human pluripotent stem cells by chemically defined forward programming. Nat Commun 2016; 7: 11208 doi:10.1038/ncomms11208
- 5 Feng Q, Shabrani N, Thon JN. et al. Scalable generation of universal platelets from human induced pluripotent stem cells. Stem Cell Reports 2014; 3: 817-831 doi:10.1016/j.stemcr.2014.09.010
- 6 Eicke D, Baigger A, Schulze K. et al. Large-scale production of megakaryocytes in microcarrier-supported stirred suspension bioreactors. Sci Rep 2018; 8: 10146 doi:10.1038/s41598-018-28459-x
- 7 Lu SJ, Li F, Yin H. et al. Platelets generated from human embryonic stem cells are functional in vitro and in the microcirculation of living mice. Cell Res 2011; 21: 530-545 doi:10.1038/cr.2011.8
- 8 Schulze H. Culture, Expansion, and Differentiation of Murine Megakaryocytes from Fetal Liver, Bone Marrow, and Spleen. Curr Protoc Immunol 2016; 112: 22F.6.1-22F.6.15 doi:10.1002/0471142735.im22f06s112
- 9 Figueiredo C, Goudeva L, Horn PA. et al. Generation of HLA-deficient platelets from hematopoietic progenitor cells. Transfusion 2010; 50: 1690-1701 doi:10.1111/j.1537-2995.2010.02644.x
- 10 Tao H, Gaudry L, Rice A. et al. Cord blood is better than bone marrow for generating megakaryocytic progenitor cells. Exp Hematol 1999; 27: 293-301 doi:10.1016/s0301-472x(98)00050-2
- 11 Perdomo J, Yan F, Leung HHL. et al. Megakaryocyte differentiation and platelet formation from human cord blood-derived CD34+ cells. J Vis Exp 2017;
- 12 Gehling UM, Ryder JW, Hogan CJ. et al. Ex vivo expansion of megakaryocyte progenitors: effect of various growth factor combinations on CD34+ progenitor cells from bone marrow and G-CSF-mobilized peripheral blood. Exp Hematol 1997; 25: 1125-1139
- 13 Ma DC, Sun YH, Zuo W. et al. CD34+ cells derived from fetal liver contained a high proportion of immature megakaryocytic progenitor cells. Eur J Haematol 2000; 64: 304-314 doi:10.1034/j.1600-0609.2000.90038.x
- 14 Vijey P, Posorske B, Machlus KR. In vitro culture of murine megakaryocytes from fetal liver-derived hematopoietic stem cells. Platelets 2018; 29: 583-588 doi:10.1080/09537104.2018.1492107
- 15 Proulx C, Boyer L, Hurnanen DR. et al. Preferential ex vivo expansion of megakaryocytes from human cord blood CD34+-enriched cells in the presence of thrombopoietin and limiting amounts of stem cell factor and Flt-3 ligand. J Hematother Stem Cell Res 2003; 12: 179-188 doi:10.1089/152581603321628322
- 16 Mazur EM, Basilico D, Newton JL. et al. Isolation of large numbers of enriched human megakaryocytes from liquid cultures of normal peripheral blood progenitor cells. Blood 1990; 76: 1771-1782
- 17 Liu Y, Wang Y, Gao Y. et al. Efficient generation of megakaryocytes from human induced pluripotent stem cells using food and drug administration-approved pharmacological reagents. Stem Cells Transl Med 2015; 4: 309-319 doi:10.5966/sctm.2014-0183
- 18 Tozawa K, Ono-Uruga Y, Yazawa M. et al. Megakaryocytes and platelets from a novel human adipose tissue-derived mesenchymal stem cell line. Blood 2019; 133: 633-643 doi:10.1182/blood-2018-04-842641
- 19 Gras C, Schulze K, Goudeva L. et al. HLA-universal platelet transfusions prevent platelet refractoriness in a mouse model. Hum Gene Ther 2013; 24: 1018-1028 doi:10.1089/hum.2013.074
- 20 Guerriero R, Testa U, Gabbianelli M. et al. Unilineage megakaryocytic proliferation and differentiation of purified hematopoietic progenitors in serum-free liquid culture. Blood 1995; 86: 3725-3736
- 21 Ono Y, Wang Y, Suzuki H. et al. Induction of functional platelets from mouse and human fibroblasts by p 45NF-E2/Maf. Blood 2012; 120: 3812-3821 doi:10.1182/blood-2012-02-413617
- 22 Takayama N, Nishikii H, Usui J. et al. Generation of functional platelets from human embryonic stem cells in vitro via ES-sacs, VEGF-promoted structures that concentrate hematopoietic progenitors. Blood 2008; 111: 5298-5306 doi:10.1182/blood-2007-10-117622
- 23 Fujimoto TT, Kohata S, Suzuki H. et al. Production of functional platelets by differentiated embryonic stem (ES) cells in vitro. Blood 2003; 102: 4044-4051 doi:10.1182/blood-2003-06-1773
- 24 Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006; 126: 663-676 doi:10.1016/j.cell.2006.07.024
- 25 Strassel C, Eckly A, Leon C. et al. Hirudin and heparin enable efficient megakaryocyte differentiation of mouse bone marrow progenitors. Exp Cell Res 2012; 318: 25-32 doi:10.1016/j.yexcr.2011.10.003
- 26 Pulecio J, Alejo-Valle O, Capellera-Garcia S. et al. Direct Conversion of Fibroblasts to Megakaryocyte Progenitors. Cell Rep 2016; 17: 671-683 doi:10.1016/j.celrep.2016.09.036
- 27 Shepherd JH, Howard D, Waller AK. et al. Structurally graduated collagen scaffolds applied to the ex vivo generation of platelets from human pluripotent stem cell-derived megakaryocytes: Enhancing production and purity. Biomaterials 2018; 182: 135-144 doi:10.1016/j.biomaterials.2018.08.019
- 28 Thon JN, Medvetz DA, Karlsson SM. et al. Road blocks in making platelets for transfusion. J Thromb Haemost 2015; 13 Suppl 1: S55-S62 doi:10.1111/jth.12942
- 29 Thon JN, Dykstra BJ, Beaulieu LM. Platelet bioreactor: accelerated evolution of design and manufacture. Platelets 2017; 28: 472-477 doi:10.1080/09537104.2016.1265922
- 30 Xu Y, Kashiwakura I, Takahashi TA. High sensitivity of megakaryocytic progenitor cells contained in placental/umbilical cord blood to the stresses during cryopreservation. Bone Marrow Transplant 2004; 34: 537-543 doi:10.1038/sj.bmt.1704632