Subscribe to RSS
DOI: 10.1055/a-1115-4756
Wenn Tränenersatzmittel nicht mehr ausreichen: die Bedeutung von Entzündungsprozessen beim Trockenen Auge. Praktische Aspekte einer antientzündlichen Therapie des Trockenen Auges
If Artificial Tears Arenʼt Enough. The Importance of Inflammatory Processes in Dry Eye Disease. Practical Aspects of an Anti-Inflammatory Therapy of Dry Eye DiseasePublication History
eingereicht 13 December 2019
akzeptiert 03 February 2020
Publication Date:
20 May 2020 (online)
Zusammenfassung
Das Trockene Auge stellt eine heterogene Erkrankung der Augenoberfläche dar. Das Krankheitsbild hat multifaktorielle Ursachen und geht normalerweise mit einer Erhöhung der Osmolarität des Tränenfilms und mit Entzündungsprozessen der Gewebe der Augenoberfläche einher. Die Bedeutung der Entzündung beim Trockenen Auge geht nicht zuletzt auch aus der aktuellen Definition des Dry Eye Workshops (DEWS) hervor. Das Verständnis der Pathomechanismen und therapeutischen Möglichkeiten für diese Entzündungsprozesse ist daher für das Management des Trockenen Auges von zentraler Bedeutung. Der Beitrag fasst den aktuellen Kenntnisstand zum Thema „Entzündung und Trockenes Auge“ zusammen und versucht, praktische Empfehlungen für die Diagnostik, Verlaufskontrolle und die Anwendung der aktuell verfügbaren Therapieoptionen für die dem Trockenen Auge zugrunde liegenden Entzündungsprozesse zu geben.
Abstract
Dry eye disease (DED) is a heterogenous disease of the ocular surface. Multiple pathogenetic factors are responsible for the disease process, but DED is generally linked to an increase in the osmolarity of the tear film and to inflammation of the ocular surface. The significance of inflammatory processes in DED is highlighted in the most recent definition of dry eye in the Dry Eye Workshop (DEWS). It is therefore critically important for the management of dry eye disease to understand the pathomechanisms and therapeutic options for the treatment of inflammatory processes. This review summarizes our current knowledge on Inflammation associated with DED and provides practical recommendations for the diagnosis and monitoring of the disease, as well as the use of currently available therapeutic options to counteract inflammation in DED.
-
Literatur
- 1 Viso E, Rodriguez-Ares MT, Gude F. Prevalence of and associated factors for dry eye in a Spanish adult population (the Salnes Eye Study). Ophthalmic Epidemiol 2009; 16: 15-21
- 2 Viso E, Rodríguez-Ares MT, Abelenda D. et al. Prevalence of asymptomatic and symptomatic meibomian gland dysfunction in the general population of Spain. Invest Ophthalmol Vis Sci 2012; 53: 2601-2606
- 3 Vehof J, Kozareva D, Hysi PG. et al. Prevalence and risk factors of dry eye disease in a British female cohort. Br J Ophthalmol 2014; 98: 1712-1717
- 4 Malet F, Le Goff M, Colin J. et al. Dry eye disease in French elderly subjects: the Alienor Study. Acta Ophthalmol 2014; 92: e429-e436 doi:10.1111/aos.12174
- 5 Nelson JD, Craig JP, Akpek EK. et al. TFOS DEWS II Introduction. Ocul Surf 2017; 15: 269-275
- 6 Craig JP, Nichols KK, Akpek EK. et al. TFOS DEWS II Definition and Classification Report. Ocul Surf 2017; 15: 276-283
- 7 [Anonymous] The definition and classification of dry eye disease: report of the Definition and Classification Subcommittee of the International Dry Eye WorkShop (2007). Ocul Surf 2007; 5: 75-92
- 8 Wilson SE. Inflammation: a unifying theory for the origin of dry eye syndrome. Manag Care 2003; 12 (Suppl.) S14-S19
- 9 Pflugfelder SC, de Paiva CS. The pathophysiology of dry eye disease: what we know and future directions for research. Ophthalmology 2017; 124 (Suppl.) S4-S13
- 10 Brignole F, Pisella PJ, Goldschild M. et al. Flow cytometric analysis of inflammatory markers in conjunctival epithelial cells of patients with dry eye. Invest Ophthalmol Vis Sci 2000; 41: 1356-1363
- 11 Baudouin C. The pathology of dry eye. Surv Ophthalmol 2001; 45 (Suppl.) S211-S220
- 12 Stern ME, Schaumburg CS, Dana R. et al. Autoimmunity at the ocular surface: pathogenesis and regulation. Mucosal Immunol 2010; 3: 425-442
- 13 Stern ME, Schaumburg CS, Pflugfelder SC. Dry eye as a mucosal autoimmune disease. Int Rev Immunol 2013; 32: 19-41
- 14 Jones L, Downie LE, Korb D. et al. TFOS DEWS II management and therapy report. Ocul Surf 2017; 15: 575-628
- 15 Bron AJ, de Paiva CS, Chauhan SK. et al. TFOS DEWS II pathophysiology report. Ocul Surf 2017; 15: 438-510
- 16 Luo L, Li DQ, Pflugfelder SC. Hyperosmolarity-induced apoptosis in human corneal epithelial cells is mediated by cytochrome c and MAPK pathways. Cornea 2007; 26: 452-460
- 17 Li DQ, Luo L, Chen Z. et al. JNK and ERK MAP kinases mediate induction of IL-1beta, TNF-alpha and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res 2006; 82: 588-596
- 18 Gilbard JP, Rossi SR, Gray KL. et al. Tear film osmolarity and ocular surface disease in two rabbit models for keratoconjunctivitis sicca. Invest Ophthalmol Vis Sci 1988; 29: 374-378
- 19 Gilbard JP. Tear film osmolarity and keratoconjunctivitis sicca. CLAO J 1985; 11: 243-250
- 20 Rhee MK, Mah FS. Inflammation in dry eye disease: how do we break the cycle?. Ophthalmology 2017; 124 (11 Suppl.): S14-S19
- 21 Papas EB. Key factors in the subjective and objective assessment of conjunctival erythema. Invest Ophthalmol Vis Sci 2000; 41: 687-691
- 22 Yang S, Lee HJ, Kim DY. et al. The use of conjunctival staining to measure ocular surface inflammation in patients with dry eye. Cornea 2019; 38: 698-705
- 23 Jackson DC, Zeng W, Wong CY. et al. Tear interferon-gamma as a biomarker for evaporative dry eye disease. Invest Ophthalmol Vis Sci 2016; 57: 4824-4830
- 24 Sullivan BD, Whitmer D, Nichols KK. et al. An objective approach to dry eye disease severity. Invest Ophthalmol Vis Sci 2010; 51: 6125-6130
- 25 Jacobi C, Jacobi A, Kruse FE. et al. Tear film osmolarity measurements in dry eye disease using electrical impedance technology. Cornea 2011; 30: 1289-1292
- 26 De Paiva CS, Corrales RM, Villarreal AL. et al. Corticosteroid and doxycycline suppress MMP-9 and inflammatory cytokine expression, MAPK activation in the corneal epithelium in experimental dry eye. Exp Eye Res 2006; 83: 526-535
- 27 Geerling G, Joussen AM, Daniels JT. et al. Matrix metalloproteinases in sterile corneal melts. Ann N Y Acad Sci 1999; 878: 571-574
- 28 Messmer EM, von Lindenfels V, Garbe A. et al. Matrix metalloproteinase 9 testing in dry eye disease using a commercially available point-of-care immunoassay. Ophthalmology 2016; 123: 2300-2308
- 29 Sambursky R, Davitt WF, Friedberg M. et al. Prospective, multicenter, clinical evaluation of point-of-care matrix metalloproteinase-9 test for confirming dry eye disease. Cornea 2014; 33: 812-818
- 30 Pisella PJ, Brignole F, Debbasch C. et al. Flow cytometric analysis of conjunctival epithelium in ocular rosacea and keratoconjunctivitis sicca. Ophthalmology 2000; 107: 1841-1849
- 31 Brignole-Baudouin F, Riancho L, Ismail D. et al. Correlation between the inflammatory marker HLA-DR and signs and symptoms in moderate to severe dry eye disease. Invest Ophthalmol Vis Sci 2017; 58: 2438-2448
- 32 Messmer EM. Konfokale In-vivo-Mikroskopie – Korrelation zu histologischen Befunden. Klin Monatsbl Augenheilkd 2012; 229: 696-704
- 33 Kheirkhah A, Rahimi Darabad R, Cruzat A. et al. Corneal epithelial immune dendritic cell alterations in sub- types of dry eye disease: a pilot in vivo confocal microscopic study. Invest Ophthalmol Vis Sci 2015; 56: 7179-7185
- 34 Villani E, Garoli E, Termine V. et al. Corneal confocal microscopy in dry eye treated with corticosteroids. Optom Vis Sci 2015; 92: e290-e295 doi:10.1097/OPX.0000000000000600
- 35 Berufsverband der Augenärzte Deutschlands (BVA), Deutsche Ophthalmologische Gesellschaft (DOG). Leitlinie Nr. 11: „Trockenes Auge“ (Sicca-Syndrom) und Blepharitis. Im Internet: https://augeninfo.de/leit/leit11.pdf Stand: 30.03.2020
- 36 Foulks GN, Borchman D, Yappert M. et al. Topical azithromycin and oral doxycycline therapy of meibomian gland dysfunction: a comparative clinical and spectroscopic pilot study. Cornea 2013; 32: 44-53
- 37 Bae CH, Chen SM, Lee HM. et al. The effect of doxycycline on PMA-induced MUC5B expression via MMP-9 and p38 in NCI-H292 cells. Clin Exp Otorhinolaryngol 2011; 4: 177-183
- 38 Yildiz E, Yenerel NM, Turan-Yardimci A. et al. Comparison of the clinical efficacy of topical and systemic azithromycin treatment for posterior blepharitis. J Ocul Pharmacol Ther 2018; 34: 365-372
- 39 Singer DD, Kennedy J, Wittpenn JR. Topical NSAIDs effect on corneal sensitivity. Cornea 2015; 34: 541-543
- 40 Rolando M, Barabino S, Alongi S. et al. Topical non-preserved diclofenac therapy for keratoconjunctivitis sicca. Adv Exp Med Biol 2002; 506: 1237-1240
- 41 Scheinman RI, Cogswell PC, Lofquist AK. et al. Role of transcriptional activation of I kappa B alpha in mediation of immunosuppression by glucocorticoids. Science 1995; 270: 283-286
- 42 Pedersen S, OʼByrne P. A comparison of the efficacy and safety of inhaled corticosteroids in asthma. Allergy 1997; 52 (39 Suppl.): S1-S34
- 43 Barton M, Filardo EJ, Lolait SJ. et al. Twenty years of the G protein-coupled estrogen receptor GPER: historical and personal perspectives. J Steroid Biochem Mol Biol 2018; 176: 4-15
- 44 Leibowitz HM. Management of inflammation in the cornea and conjunctiva. Ophthalmology 1980; 87: 753-758
- 45 Polansky JR, Weinreb RN. Steroids as anti-inflammatory Agents. In: Sears ML. ed. Pharmacology of the Eye. New York: Springer; 1984: 459-538
- 46 Pleyer U, Ursell PG, Rama P. Intraocular pressure effects of common topical steroids for post-cataract inflammation: are they all the same?. Ophthalmol Ther 2013; 2: 55-72
- 47 Cantrill HL, Palmberg PF, Zink HA. et al. Comparison of in vitro potency of corticosteroids with ability to raise intraocular pressure. Am J Ophthalmol 1975; 79: 1012-1017
- 48 Razeghinejad MR, Katz LJ. Steroid-induced iatrogenic glaucoma. Ophthalmic Res 2012; 47: 66-80
- 49 Dolder R, Skinner FS. Hrsg. Ophthalmika – Pharmakologie, Biopharmazie und Galenik der Augenarzneimittel. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 1990
- 50 Pflugfelder SC, Maskin SL, Anderson B. et al. A randomized, double-masked, placebo-controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0,5 %, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am J Ophthalmol 2004; 138: 444-457
- 51 Olmiere C, Raveu A, Baudouin C. T1565, a new efficient and safe preservative free hydrocortisone. ARVO 2017, Poster 1079 – B0367. Im Internet: https://studyres.com/doc/17129574/arvo-2017-annual-meeting-abstracts-160-anti Stand: 30.03.2020
- 52 Araki-Sasaki K, Katsuta O, Mano H. et al. The effects of oral and topical corticosteroid in rabbit corneas. BMC Ophthalmol 2016; 16: 160 doi:10.1186/s12886-016-0339-5
- 53 Kashani S, Mearza AA. Uses and safety profile of ciclosporin in ophthalmology. Expert Opin Drug Saf 2008; 7: 79-89
- 54 Kunert KS, Tisdale AS, Stern ME. et al. Analysis of topical cyclosporine treatment of patients with dry eye syndrome: effect of conjunctival lymphocytes. Arch Ophthalmol 2000; 118: 1489-1496
- 55 Kunert KS, Tisdale AS, Gipson IK. Goblet cell numbers and epithelial proliferation in the conjunctiva of patients with dry eye syndrome treated with cyclosporine. Arch Ophthalmol 2002; 120: 330-337
- 56 Lallemand F, Daull P, Benita S. et al. Successfully improving ocular drug delivery using the cationic nanoemulsion, Novasorb. J Drug Deliv 2012; 2012: 604204 doi:10.1155/2012/604204
- 57 Daull P, Lallemand F, Philips B. et al. Distribution of cyclosporine A in ocular tissues after topical administration of cyclosporine A cationic emulsions to pigmented rabbits. Cornea 2013; 32: 345-354
- 58 Li Y, Johnson N, Capano M. et al. Cyclophyllin-D promotes the mitochondrial permeability transition but has opposite effects on apoptosis and necrosis. Biochem J 2004; 383: 101-109
- 59 Agarwal P, Rupenthal ID. Modern approaches to the ocular delivery of cyclosporine A. Drug Discov Today 2016; 21: 977-988
- 60 Hoy SM. Ciclosporin ophthalmic solution emulsion 0.1 %: a review in severe dry eye disease. Drugs 2017; 77: 1909-1916
- 61 Liaw JH, Rojanasakul YY, Robinson JR. The effect of drug charge type and charge-density on corneal transport. Int J Pharm 1992; 88: 111-124
- 62 Stevenson D, Tauber J, Reis BL. Efficacy and safety of cyclosporin A ophthalmic emulsion in the treatment of moderate-to-severe dry eye disease: a dose-ranging, randomized trial. The Cyclosporin A Phase 2 Study Group. Ophthalmology 2000; 107: 967-974
- 63 Baiza-Durán L, Medrano-Palafox J, Hernández-Quintela E. et al. A comparative clinical trial of the efficacy of two different aqueous solutions of cyclosporine for the treatment of moderate-to-severe dry eye syndrome. Br J Ophthalmol 2010; 94: 1312-1315
- 64 Wiederholt M, Kössendrup D, Schulz W. et al. Pharmacokinetic of topical cyclosporin A in the rabbit eye. Invest Ophthalmol Vis Sci 1986; 27: 519-524
- 65 Hoffmann F, Wiederholt M. Topical cyclosporin A in the treatment of corneal graft reaction. Cornea 1986; 5: 129
- 66 Daull P, Feraille L, Barabino S. et al. Efficacy of a new topical cationic emulsion of cyclosporine A on dry eye clinical signs in an experimental mouse model of dry eye. Exp Eye Res 2016; 153: 159-164
- 67 Leonardi A, Van Setten G, Amrane M. et al. Efficacy and safety of 0.1 % cyclosporine A cationic emulsion in the treatment of severe dry eye disease: a multicenter randomized trial. Eur J Ophthalmol 2016; 26: 287-296
- 68 Park JY, Kim BG, Kim JS. et al. Matrix metalloproteinase 9 point-of-care immunoassay result predicts response to topical cyclosporine treatment in dry eye disease. Transl Vis Sci Technol 2018; 7: 31 doi:10.1167/tvst.7.5.31
- 69 Sheppard JD, Donnenfeld ED, Holland EJ. et al. Effect of loteprednol etabonate 0.5 % on initiation of dry eye treatment with topical cyclosporine 0.05 %. Eye Contact Lens 2014; 40: 289-296
- 70 Hristov N, Kortuem K, Priglinger S. et al. Topisches Ciclosporin A 0,1 % in der Therapie des Trockenen Auges mit schwerer Keratopathie. Poster PSa03-10, vorgestellt auf der DOG in Bonn 2018. Abstractband DOG 2018. Ophthalmologe 2018; 115 (Suppl. 01) 1-194 doi:10.1007/s00347-018-0760-7
- 71 Donnenfeld ED, Perry HD, Nattis AS. et al. Lifitegrast for the treatment of dry eye disease in adults. Expert Opin Pharmacother 2017; 18: 1517-1524
- 72 Chung JK, Spencer E, Hunt M. et al. Ocular distribution and pharmacokinetics of lifitegrast in pigmented rabbits and mass balance in beagle dogs. J Ocul Pharmacol Ther 2018; 34: 224-232
- 73 Sheppard JD, Torkildsen GL, Lonsdale JD. et al. OPUS-1 Study Group. Lifitegrast ophthalmic solution 5.0 % for treatment of dry eye disease: results of the OPUS-1 phase 3 study. Ophthalmology 2014; 121: 475-483
- 74 Baudouin C, de la Maza MS, Amrane M. et al. One-year efficacy and safety of 0.1 % cyclosporine a cationic emulsion in the treatment of severe dry eye disease. Eur J Ophthalmol 2017; 27: 678-685
- 75 Rao SN. Topical cyclosporine 0.05 % for the prevention of dry eye disease progression. J Ocul Pharmacol Ther 2010; 26: 157-164
- 76 Rao SN. Reversibility of dry eye deceleration after topical cyclosporine 0.05 % withdrawal. J Ocul Pharmacol Ther 2011; 27: 603-609
- 77 Leonardi A, Messmer EM, Labetoulle M. et al. Efficacy and safety of 0.1 % ciclosporin A cationic emulsion in dry eye disease: a pooled analysis of two double-masked, randomised, vehicle-controlled phase III clinical studies. Br J Ophthalmol 2019; 103: 125-131
- 78 Barber LD, Pflugfelder SC, Tauber J. et al. Phase III safety evaluation of cyclosporine 0.1 % ophthalmic emulsion administered twice daily to dry eye disease patients for up to 3 years. Ophthalmology 2005; 112: 1790-1794
- 79 Su MY, Perry HD, Barsam A. et al. The effect of decreasing the dosage of cyclosporine A 0.05 % on dry eye disease after 1 year of twice-daily therapy. Cornea 2011; 30: 1098-1104
- 80 Wilson SE, Perry HD. Long-term resolution of chronic dry eye symptoms and signs after topical cyclosporine treatment. Ophthalmology 2007; 114: 76-79
- 81 Straub M, Bron AM, Muselier-Mathieu A. et al. Long-term outcome after topical ciclosporin in severe dry eye disease with a 10-year follow-up. Br J Ophthalmol 2016; 100: 1547-1550
- 82 Labetoulle M, Leonardi A, Amrane M. et al. Persistence of efficacy of 0.1 % cyclosporin a cationic emulsion in subjects with severe keratitis due to dry eye disease: a nonrandomized, open-label extension of the SANSIKA study. Clin Ther 2018; 40: 1894-1906
- 83 Pisella PJ, Labetoulle M, Doan S. et al. Topical ocular 0.1 % cyclosporine A cationic emulsion in dry eye disease patients with severe keratitis: experience through the French early-access program. Clin Ophthalmol 2018; 12: 289-299
- 84 Clegg JP, Guest JF, Lehman A. et al. The annual cost of dry eye syndrome in France, Germany, Italy, Spain, Sweden and the United Kingdom among patients managed by ophthalmologists. Ophthalmic Epidemiol 2006; 13: 263-274
- 85 SANSIKA Studie SANSIKA study, data on file Safety population. Persönliche Information Santen Inc. 22.02.2019
- 86 Sall K, Stevenson OD, Mundorf TK. et al. Two multicenter, randomized studies of the efficacy and safety of cyclosporine ophthalmic emulsion in moderate to severe dry eye disease. CsA Phase 3 Study Group. Ophthalmology 2000; 107: 631-639
- 87 Prabhasawat P, Tesavibul N, Mahawong W. A randomized double-masked study of 0.05 % cyclosporine ophthalmic emulsion in the treatment of meibomian gland dysfunction. Cornea 2012; 31: 1386-1393
- 88 Zhou XQ, Wei RL. Topical cyclosporine A in the treatment of dry eye: a systematic review and meta-analysis. Cornea 2014; 33: 760-767
- 89 Guzey M, Karaman SK, Satici A. et al. Efficacy of topical cyclosporine A in the treatment of severe trachomatous dry eye. Clin Exp Ophthalmol 2009; 37: 541-549