Subscribe to RSS
DOI: 10.1055/a-1120-8754
Bedeutung von transienten Rezeptorpotenzialkanälen für die okuläre Oberfläche: Einblick und Ausblick – von der Laborforschung zur klinischen Praxis
Importance of Transient Receptor Potential Channels of the Ocular Surface: Insights and Outlook – from Laboratory Research to Clinical PracticePublication History
eingereicht 15 December 2019
akzeptiert 07 February 2020
Publication Date:
14 April 2020 (online)
![](https://www.thieme-connect.de/media/klimo/202005/lookinside/thumbnails/10-1055-a-1120-8754_kl2127-1.jpg)
Zusammenfassung
Für eine optimale visuelle Funktion ist eine Augenoberfläche mit einem vitalen Epithelverband und stabilen Tränenfilm erforderlich. Eine Vielzahl von endogenen und externen Faktoren kann die empfindliche Homöostase der Augenoberfläche beeinflussen und zu einem „trockenen Auge“ führen. Studien im letzten Jahrzehnt haben gezeigt, dass Ca2+ ein wichtiger Faktor bei der Kontrolle der Epithelfunktion der Augenoberfläche ist. Dabei konnten insbesondere transiente Rezeptorpotenzialkanäle (TRPs) als wichtige Komponenten in Hornhaut- und Bindehautzellen identifiziert werden. Die TRPs sind nicht selektive Kationenkanäle, die als molekulare Sensoren wärme-, nozi- bzw. osmosensibel sind. Unsere Ca2+-Imaging- und Patch-Clamp-Studien zeigen, dass die Aktivität von 2 TRP-Isoformen, TRPV1 und TRPM8, durch Änderungen der Osmolarität, der Außentemperatur und einiger endogener Substrate moduliert werden kann. Diese TRPs werden sowohl an nicht neuronalen als auch an neuronalen Hornhautzellen exprimiert. Darüber hinaus beeinflussen diese Wechselwirkungen die Expression von Zytokinen, die inflammatorische Prozesse fördern oder hemmen und damit einen wichtigen Beitrag zur Physiologie des Trockenen Auges leisten. Zusammengenommen führen diese Ergebnisse nicht nur zu einem besseren Verständnis der Pathophysiologie von Schmerz- und Entzündungsreaktionen der Augenoberfläche. Diese Studien können auch neue Wege aufzeigen, um die Pathophysiologie der Krankheit zu verstehen und die Entwicklung neuer therapeutischer Angriffspunkte beim Syndrom des Trockenen Auges fördern.
Abstract
Optimal vision requires an ocular surface with vital epithelial coverage and a stable tear film. A multitude of endogenous and external factors may alter this delicate balance. Studies over the last decade have established that Ca2+ is an important factor in the control of ocular surface epithelial function and has led to the identification of critical components. In particular, transient receptor potential channels (TRPs) have been identified as important components in corneal and conjunctival cells. These channels encompass a group of ion channels of numerous cell types. TRPs are nonselective cation channels which are Ca2+ permeable. Most TRPs serve as thermosensitive molecular sensors (thermo-TRPs). Our Ca2+ imaging and patch-clamp studies indicate that the activity of two TRP isoforms, TRPV1 and TRPM8, can be modulated by changes in external temperature osmolarity and some endogenous substrates. These TRPs are expressed on both non-neuronal and neuronal corneal cells. Furthermore, these interactions affect control of cytokines either promoting or inhibiting inflammation, one of the key findings in dry eye syndrome. Taken together, these results not only lead to a better understanding of the pathophysiology in pain and inflammation reactions on the surface of the eye, but these studies may also offer new avenues to understand the pathophysiology of the disease and support the development of novel therapeutic targets in dry eye syndrome.
-
Literatur
- 1 Steven P. Basics of clinical Immunology, Inflammation Pathways. In: Pleyer U. ed. Entzündliche Augenerkrankungen. Heidelberg: Springer; 2014: 6-8
- 2 Luo L, Li DQ, Corrales RM. et al. Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Eye Contact Lens 2005; 31: 186-193
- 3 Mergler S, Garreis F, Sahlmüller M. et al. Calcium regulation by thermo- and osmosensing transient receptor potential vanilloid channels (TRPVs) in human conjunctival epithelial cells. Histochem Cell Biol 2012; 137: 743-761 doi:10.1007/s00418-012-0924-5
- 4 Pan Z, Wang Z, Yang H. et al. TRPV1 activation is required for hypertonicity-stimulated inflammatory cytokine release in human corneal epithelial cells. Invest Ophthalmol Vis Sci 2011; 52: 485-493 doi:10.1167/iovs.10-5801
- 5 Mergler S, Dietrich-Ntoukas T, Pleyer U. [Neurotrophic keratopathy: principles, diagnostics and treatment]. Ophthalmologe 2019; 116: 797-810 doi:10.1007/s00347-019-0946-7
- 6 Alamri A, Bron R, Brock JA. et al. Transient receptor potential cation channel subfamily V member 1 expressing corneal sensory neurons can be subdivided into at least three subpopulations. Front Neuroanat 2015; 9: 71 doi:10.3389/fnana.2015.00071
- 7 Parra A, Madrid R, Echevarria D. et al. Ocular surface wetness is regulated by TRPM8-dependent cold thermoreceptors of the cornea. Nature Medicine 2010; 16: 1396-1399 doi:10.1038/nm.2264
- 8 Mergler S, Valtink M, Coulson-Thomas VJ. et al. TRPV channels mediate temperature-sensing in human corneal endothelial cells. Exp Eye Res 2010; 90: 758-770 doi:10.1016/j.exer.2010.03.010
- 9 Mergler S, Garreis F, Sahlmüller M. et al. Thermosensitive transient receptor potential channels in human corneal epithelial cells. J Cell Physiol 2011; 226: 1828-1842 doi:10.1002/jcp.22514
- 10 Turker E, Garreis F, Khajavi N. et al. Vascular endothelial growth factor (VEGF) induced downstream responses to transient receptor potential vanilloid 1 (TRPV1) and 3-iodothyronamine (3-T1AM) in human corneal keratocytes. Front Endocrinol (Lausanne) 2018; 9: 670 doi:10.3389/fendo.2018.00670
- 11 Zhang F, Yang H, Wang Z. et al. Transient receptor potential vanilloid 1 activation induces inflammatory cytokine release in corneal epithelium through MAPK signaling. J Cell Physiol 2007; 213: 730-739 doi:10.1002/jcp.21141
- 12 Jacobi C, Messmer EM. [Diagnosis of dry eye disease]. Ophthalmologe 2018; 115: 433-450 doi:10.1007/s00347-018-0676-2
- 13 Reinach PS, Mergler S, Okada Y. et al. Ocular transient receptor potential channel function in health and disease. BMC Ophthalmol 2015; 15 (Suppl. 01) S153 doi:10.1186/s12886-015-0135-7
- 14 Reinach PS, Chen W, Mergler S. Polymodal roles of transient receptor potential channels in the control of ocular function. Eye Vis (Lond) 2015; 2: 5 doi:10.1186/s40662-015-0016-4
- 15 Yang H, Mergler S, Sun X. et al. TRPC4 knockdown suppresses EGF-induced store operated channel activation and growth in human corneal epithelial cells. J Biol Chem 2005; 280: 32230-32237
- 16 Parra A, Gonzalez-Gonzalez O, Gallar J. et al. Tear fluid hyperosmolality increases nerve impulse activity of cold thermoreceptor endings of the cornea. Pain 2014; 155: 1481-1491 doi:10.1016/j.pain.2014.04.025
- 17 Yang Y, Yang H, Wang Z. et al. Functional TRPV1 expression in human corneal fibroblasts. Exp Eye Res 2013; 107: 121-129 doi:10.1016/j.exer.2012.11.004
- 18 Yamada T, Ueda T, Ugawa S. et al. Functional expression of transient receptor potential vanilloid 3 (TRPV3) in corneal epithelial cells: involvement in thermosensation and wound healing. Exp Eye Res 2010; 90: 121-129
- 19 Pan Z, Yang H, Mergler S. et al. Dependence of regulatory volume decrease on transient receptor potential vanilloid 4 (TRPV4) expression in human corneal epithelial cells. Cell Calcium 2008; 44: 374-385 doi:10.1016/j.ceca.2008.01.008
- 20 Mergler S, Valtink M, Taetz K. et al. Characterization of transient receptor potential vanilloid channel 4 (TRPV4) in human corneal endothelial cells. Exp Eye Res 2011; 93: 710-719 doi:10.1016/j.exer.2011.09.021
- 21 Mergler S, Pleyer U, Reinach P. et al. EGF suppresses hydrogen peroxide induced Ca2+ influx by inhibiting L-type channel activity in cultured human corneal endothelial cells. Exp Eye Res 2005; 80: 285-293 doi:10.1016/j.exer.2004.09.012
- 22 Lucius A, Khajavi N, Reinach PS. et al. 3-Iodothyronamine increases transient receptor potential melastatin channel 8 (TRPM8) activity in immortalized human corneal epithelial cells. Cell Signal 2016; 28: 136-147 doi:10.1016/j.cellsig.2015.12.005
- 23 Mergler S, Mertens C, Valtink M. et al. Functional significance of thermosensitive transient receptor potential melastatin channel 8 (TRPM8) expression in immortalized human corneal endothelial cells. Exp Eye Res 2013; 116: 337-349 doi:10.1016/j.exer.2013.10.003
- 24 Canner JP, Linsenmayer TF, Kubilus JK. Developmental regulation of trigeminal TRPA1 by the cornea. Invest Ophthalmol Vis Sci 2014; 56: 29-36 doi:10.1167/iovs.14-15035
- 25 Steven P, Cursiefen C. [Anti-inflammatory treatment in dry eye disease]. Klin Monatsbl Augenheilkd 2012; 229: 500-505 doi:10.1055/s-0031-1299519
- 26 Yang Y, Yang H, Wang Z. et al. Wakayama symposium: dependence of corneal epithelial homeostasis on transient receptor potential function. Ocul Surf 2013; 11: 8-11 doi:10.1016/j.jtos.2012.09.001
- 27 Pflugfelder SC. Anti-inflammatory therapy of dry eye. Ocul Surf 2003; 1: 31-36
- 28 Messmer EM. The pathophysiology, diagnosis, and treatment of dry eye disease. Dtsch Arztebl Int 2015; 112: 71-81 doi:10.3238/arztebl.2015.0071
- 29 Steven P, Braun T, Krosser S. et al. [Influence of aging on severity and anti-inflammatory treatment of experimental dry eye disease]. Klin Monatsbl Augenheilkd 2017; 234: 662-669 doi:10.1055/s-0043-105137
- 30 Baudouin C, Figueiredo FC, Messmer EM. et al. A randomized study of the efficacy and safety of 0.1 % cyclosporine A cationic emulsion in treatment of moderate to severe dry eye. Eur J Ophthalmol 2017; 27: 520-530 doi:10.5301/EJO.5000952
- 31 Baudouin C, Aragona P, Messmer EM. et al. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf 2013; 11: 246-258 doi:10.1016/j.jtos.2013.07.003
- 32 Messmer EM. [Osmoprotection as a new therapeutic principle]. Ophthalmologe 2007; 104: 987-990
- 33 Mergler S, Valtink M, Takayoshi S. et al. Temperature-sensitive transient receptor potential channels in corneal tissue layers and cells. Ophthalmic Res 2014; 52: 151-159 doi:10.1159/000365334
- 34 Mergler S, Valtink M, Engelmann K. et al. New insights into electrophysiology and functional transient receptor potential (TRP) channel expression in the corneal endothelium. Invest Ophthalmol Vis Sci 2008; 50: 687
- 35 Mergler S, Cheng Y, Skosyrski S. et al. Altered calcium regulation by thermosensitive transient receptor potential channels in etoposide-resistant WERI-Rb1 retinoblastoma cells. Exp Eye Res 2012; 94: 157-173 doi:10.1016/j.exer.2011.12.002
- 36 Mergler S, Derckx R, Reinach PS. et al. Calcium regulation by temperature-sensitive transient receptor potential channels in human uveal melanoma cells. Cell Signal 2014; 26: 56-69 doi:10.1016/j.cellsig.2013.09.017
- 37 Walcher L, Budde C, Böhm A. et al. TRPM8 activation via 3-iodothyronamine blunts VEGF-induced transactivation of TRPV1 in human uveal melanoma cells. Front Pharmacol 2018; 9: 1234 doi:10.3389/fphar.2018.01234
- 38 Garreis F, Schröder A, Reinach PS. et al. Upregulation of transient receptor potential vanilloid type-1 channel activity and Ca2+ influx dysfunction in human pterygial cells. Invest Ophthalmol Vis Sci 2016; 57: 2564-2577 doi:10.1167/iovs.16-19170
- 39 Mergler S, Pleyer U. [Physiology of the human corneal endothelium – new insights from electrophysiological investigations]. Klin Monatsbl Augenheilkd 2011; 228: 520-524 doi:10.1055/s-0031-1273254
- 40 Yang Y, Yang H, Wang Z. et al. Cannabinoid receptor 1 suppresses transient receptor potential vanilloid 1-induced inflammatory responses to corneal injury. Cell Signal 2013; 25: 501-511 doi:10.1016/j.cellsig.2012.10.015
- 41 Hashemi H, Khabazkhoob M, Kheirkhah A. et al. Prevalence of dry eye syndrome in an adult population. Clin Exp Ophthalmol 2014; 42: 242-248 doi:10.1111/ceo.12183
- 42 Khajavi N, Reinach PS, Skrzypski M. et al. L-carnitine reduces in human conjunctival epithelial cells hypertonic-induced shrinkage through interacting with TRPV1 channels. Cell Physiol Biochem 2014; 34: 790-803 doi:10.1159/000363043
- 43 Khajavi N, Mergler S, Biebermann H. 3-Iodothyronamine, a novel endogenous modulator of transient receptor potential melastatin 8?. Front Endocrinol (Lausanne) 2017; 8: 198 doi:10.3389/fendo.2017.00198
- 44 Khajavi N, Reinach PS, Slavi N. et al. Thyronamine induces TRPM8 channel activation in human conjunctival epithelial cells. Cell Signal 2015; 27: 315-325 doi:10.1016/j.cellsig.2014.11.015
- 45 Corrales RM, Luo L, Chang EY. et al. Effects of osmoprotectants on hyperosmolar stress in cultured human corneal epithelial cells. Cornea 2008; 27: 574-579
- 46 Shamsi FA, Chaudhry IA, Boulton ME. et al. L-carnitine protects human retinal pigment epithelial cells from oxidative damage. Curr Eye Res 2007; 32: 575-584
- 47 Chen W, Zhang X, Li J. et al. Efficacy of osmoprotectants on prevention and treatment of murine dry eye. Invest Ophthalmol Vis Sci 2013; 54: 6287-6297
- 48 Lucius A, Khajavi N, Reinach PS. et al. 3-Iodothyronamine increases transient receptor potential melastatin channel 8 (TRPM8) activity in immortalized human corneal epithelial cells. Cell Signal 2015; 28: 136-147 doi:10.1016/j.cellsig.2015.12.005
- 49 Chen GL, Lei M, Zhou LP. et al. Borneol Is a TRPM8 agonist that increases ocular surface wetness. PLoS One 2016; 11: e0158868 doi:10.1371/journal.pone.0158868
- 50 Li WR, Chen RY, Yang L. et al. Pharmacokinetics of natural borneol after oral administration in mice brain and its effect on excitation ratio. Eur J Drug Metab Pharmacokinet 2012; 37: 39-44 doi:10.1007/s13318-011-0058-5
- 51 Moreno-Montanes J, Bleau AM, Jimenez AI. Tivanisiran, a novel siRNA for the treatment of dry eye disease. Expert Opin Investig Drugs 2018; 27: 421-426 doi:10.1080/13543784.2018.1457647
- 52 Dinter J, Khajavi N, Mühlhaus J. et al. The multitarget ligand 3-iodothyronamine modulates β-adrenergic receptor 2 signaling. Eur Thyroid J 2015; 4: 21-29 doi:10.1159/000381801