Subscribe to RSS
DOI: 10.1055/a-1122-7861
Einfluss von Haltungsfehlern auf den Sauerstoffhaushalt in Standardaquarien
The effect of husbandry shortcomings on oxygen supply in pet fish tanksZusammenfassung
Gegenstand und Ziel Zur Überprüfung der Eignung von Standardaquarien zur dauerhaften Haltung von Zierfischen wurden in einer Gruppe von Standardaquarien mit 54 Litern Inhalt der Sauerstoffverbrauch und -eintrag gemessen.
Material und Methoden Die Einwirkungen simulierter definierter Störungen (Anfängerfehler wie übermäßige Futtergabe, mangelnde Filterreinigung, unterschiedliche Oberflächenbewegung, Bedeckung der Wasseroberfläche mit Pflanzen) auf den Sauerstoffverbrauch im Aquarium wurden im stark mit Fischen besetzten Aquarium und im vereinfachten Modellaquarium quantitativ ermittelt.
Ergebnisse Den größten Sauerstoffverbrauch zeigten neben dem im Versuch nicht quantifizierbaren Verbrauch der Einrichtung (Bodengrund, Wasserpflanzen, Bakterien, reduzierte Substanzen) der Stoffwechsel der Fische, der mit der Futterdosis stark anstieg, sowie in geringem Maße der oxidative Umbau von Stickstoff in Form von Ammonium zu Nitrat. Der Sauerstoffeintrag wurde maßgeblich durch die Bedeckung der Wasseroberfläche und die Wasserbewegung beeinflusst.
Schlussfolgerung und klinische Relevanz Die Ergebnisse erlauben erstmals quantitative Voraussagen zur Interaktion von Fischbesatz und Sauerstoffhaushalt in eingerichteten handelsüblichen Standardaquarien. Selbst unter den im Versuch eingestellten Bedingungen (erhöhter Besatz, mangelnde Filterhygiene, übermäßige Futtergabe) erwiesen sich alle Aquarien als geeignet für die dauerhafte Haltung von Zierfischen. Es ist jedoch darauf zu achten, dass die Wasseroberfläche frei von Bedeckung und ständig gut bewegt ist. Bei der Fütterung sollte das Futter eher in mehreren kleinen Portionen als in großen Portionen gegeben werden.
Abstract
Objective In order to investigate the suitability of standard fish tank setups for permanent keeping of ornamental pet fish, oxygen consumption and exchange rates were measured in a group of standard aquariums with a volume of 54 litres.
Materials and methods The effects of defined disturbances on oxygen partial pressure in fish tanks were measured. These simulated typical beginners’ errors such as a high stocking density, excessive feeding, insufficient filter cleaning, lack of water movement, and plant coverage of the water surface. Quantitative changes in oxygen partial pressure were measured in the tank as well as in a simplified model tank.
Results Oxygen uptake rate of the tank (substrate, aquatic plants, bacteria, reduced substances) was not quantifiable in the experiment. The metabolism of the fish, which increased sharply with the feeding dose, exhibited the greatest effect on oxygen consumption in the fish tank. Oxidative conversion of nitrogen from ammonia to nitrate also caused a decrease in oxygen content, however to a lesser extent. Oxygen uptake from the atmosphere was significantly modulated by water flow rate and size of the diffusion area of the water surface.
Conclusion and clinical relevance These results allow quantitative predictions concerning the interaction of fish stocking density and oxygen balance in standard commercial aquarium setups. Even under conditions of high stocking density, poor filter hygiene and excessive feeding, all tested tanks demon strated their suitability for permanent keeping of ornamental fish. Care is warranted, however, that water flow is maintained and its surface is not covered by plants. Ideally, the fish should be fed several small portions during daytime rather than a single large ration.
Schlüsselwörter
Zierfische - Sauerstoffversorgung - Fütterung - kritischer Sauerstoffpartialdruck - AquariumPublication History
Received: 09 January 2020
Accepted: 26 February 2020
Article published online:
23 April 2020
© Georg Thieme Verlag KG
Stuttgart · New York
-
Literatur
- 1 Industrieverband Heimtierbedarf (IVH) e. V., Zentralverband Zoologischer Fachbetriebe Deutschlands e. V. Der Deutsche Heimtiermarkt 2018. Struktur und Umsatzdaten. Düsseldorf, Wiesbaden: 2019
- 2 BMELV. Mindestanforderungen an die Haltung von Zierfischen (Süßwasser). Gutachten über die Anforderungen an die Haltung von Zierfischen, die mindestens eingehalten werden sollen, vom 30.12.1998.
- 3 Clarke A, Johnston NM. Scaling of metabolic rate with body mass and temperature in teleost fish. J Anim Ecol 1999; 68 (05) 893-905 doi:10.1046/j.1365–2656.1999.00337.x
- 4 Almeida-Val VMF de, Chippari Gomes AR, Lopes NP. Metabolic and Physiological Adjustments to Low Oxygen and High Temperature in Fishes of the Amazon. In: Val AL, Randall DJ, Almeida-Val VMF de. eds. Fish Physiology: The Physiology of Tropical Fishes. Vol. 21. Fish Physiology. Amsterdam, Boston: Elsevier Academic Press; 2006: 443-500
- 5 Dejours P. Principles of comparative respiratory physiology. Amsterdam: North-Holland Publishing Company; 1975
- 6 Hetz SK. Amazonien, die Fische und der Sauerstoff. In: DATZ Redaktion. Hrsg. DATZ Sonderheft. Amazonas 2. DATZ Sonderheft. Stuttgart: Ulmer; 2006: 6-13
- 7 Wood CM. The fallacy of the Pcrit – Are there more useful alternatives?. J Exp Biol 2018; 221 (22) 1-9 doi:10.1242/jeb.163717
- 8 Boutilier RG. Mechanisms of cell survival in hypoxia and hypothermia. J Exp Biol 2001; 204 (18) 3171-3181
- 9 Boutilier RG, St-Pierre J. Surviving hypoxia without really dying. Comp Biochem Physiol A 2000; 126 (04) 481-490 doi:10.1016/S1095–6433(00)00234–8
- 10 Nilsson GE, Perez-Pinzon M, Dimberg K. et al. Brain sensitivity to anoxia in fish as reflected by changes in extracellular K+ activity. Am J Physiol 1993; 264 (02) Pt-2 R250-R253
- 11 Flint N, Pearson RG, Crossland MR. Use of aquatic plants to create fluctuating hypoxia in an experimental environment. Mar Freshw Res 2012; 63 (04) 351 doi:10.1071/MF11190
- 12 Bridges CR. Respiratory adaptations in intertidal fish. Am Zool 1988; 28 (01) 79-96
- 13 Podrabsky JE, Hrbek T, Hand SC. Physical and chemical characteristics of ephemeral pond habitats in the Maracaibo basin and Llanos region of Venezuela. Hydrobiologia 1998; 362: 67-77 doi:10.1023/A:1003168704178
- 14 Jorga W, Weise G. Biomasseentwicklung submerser Makrophyten in langsam fließenden Gewässern in Beziehung zum Sauerstoffhaushalt. Int Rev ges Hydrobiol Hydrogr 1977; 62 (02) 209-234 doi:10.1002/iroh.1977.3510620202
- 15 Hagopian DS, Riley JG. A closer look at the bacteriology of nitrification. Aquacult Eng 1998; 18 (04) 223-244 doi:10.1016/S0144–8609(98)00032–6
- 16 Arbeitsgemeinschaft Sachkunde VDA/DGHT Sachkunde GbR. Sachkundeordner Aquaristik. Süßwasser Meerwasser Gartenteich. Sparneck: 2016
- 17 Lewbart GA. Clinical nutrition of ornamental fish. Semin Avian Exotic Pet Med 1998; 7 (03) 154-158
- 18 Earle KE. The nutritional-requirements of ornamental fish. Vet Quart 1995; 17 (SU 1) S53-S55
- 19 Pannevis MC, Earle KE. Maintenance energy requirement of five popular species of ornamental fish. J Nutr 1994; 124 (Suppl. 12) 2616S-2618S doi:10.1093/jn/124.suppl_12.2616S
- 20 Graham JB. The transition to air breathing in fishes. 2. Effects of hypoxia acclimation on the bimodal gas exchange of Ancistrus chagresi (Loricariidae). J Exp Biol 1983; 102: 157-173
- 21 Brett JR, Groves TDD. Physiological energetics. In: Randall DJ, Brett JR, Hoar WS. eds. Fish Physiology: Bioenergetics and Growth. v. 8. Fish Physiology. New York, London: Academic Press; 1979: 279-352
- 22 Campos DF, Jesus TF, Kochhann D. et al. Metabolic rate and thermal tolerance in two congeneric Amazon fishes: Paracheirodon axelrodi Schultz, 1956 and Paracheirodon simulans Géry, 1963 (Characidae). Hydrobiologia 2017; 789 (01) 133-142 doi:10.1007/s10750–016–2649–2
- 23 Teo L-H, Chen T-W. A study of metabolic rates of Poecilia reticulata Peters under different conditions. Aquac Res 1993; 24 (01) 109-117 doi:10.1111/j.1365–2109.1993.tb00833.x
- 24 Guo F-C, Teo L-H, Chen T-W. Effects of anaesthetics on the water parameters in a simulated transport experiment of platyfish, Xiphophorus maculatus (Günther). Aquacult Res 1995; 26 (04) 265-271 doi:10.1111/j.1365–2109.1995.tb00911.x
- 25 Kramer DL, McClure M. Aerial respiration in the catfish, Corydoras aeneus (Callichthyidae). Can J Zool 1980; 58 (11) 1984-1991 doi:10.1139/z80–273
- 26 Kramer DL, Mehegan JP. Aquatic surface respiration, an adaptive response to hypoxia in the guppy, Poecilia reticulata (Pisces, Poeciliidae). Environ Biol Fish 1981; 6 (03/04) 299-313 doi:10.1007/BF00005759
- 27 Severinghaus JW, Bradley AF. Electrodes for blood pO2 and pCO2 determination. J Appl Physiol 1958; 13 (03) 515-520 doi:10.1152/jappl.1958.13.3.515
- 28 Piiper J, Dejours P, Haab P. et al. Concepts and basic quantities in gas exchange physiology. Respir Physiol 1971; 13 (03) 292-304 doi:10.1016/0034–5687(71)90034-X
- 29 Chabot D, Koenker R, Farrell AP. The measurement of specific dynamic action in fishes. J Fish Biol 2016; 88 (01) 152-172 doi:10.1111/jfb.12836
- 30 Chabot D, Steffensen JF, Farrell AP. The determination of standard metabolic rate in fishes. J Fish Biol 2016; 88 (01) 81-121 doi:10.1111/jfb.12845
- 31 Geisler R. Investigations about free oxygen, biological oxygen demand and oxygen consumption of fishes in a tropical black-water (rio Negro, Amazonia, Brasil). Arch Hydrobiol 1969; 66 (03) 307-325
- 32 Jobling M. The influences of feeding on the metabolic-rate of fishes – a short review. J Fish Biol 1981; 18 (04) 385-400
- 33 McCue MD. Specific dynamic action: A century of investigation. Comp Biochem Physiol A 2006; 144 (04) 381-394 doi:10.1016/j.cbpa.2006.03.011
- 34 Garduño Paz MV, Méndez Sánchez JF, Burggren W. et al. Metabolic rate and hypoxia tolerance in Girardinichthys multiradiatus (Pisces: Goodeidae), an endemic fish at high altitude in tropical Mexico. Comp Biochem Physiol A Mol Integr Physiol 2020; 239 (110576) 1-9
- 35 Graham JB, Baird TA. The transition to air breathing in fishes. 1. Environmental effects on the facultative air breathing of Ancistrus chagresi and Hypostomus plecostomus (Loricariidae). J Exp Biol 1982; 96: 53-67
- 36 Rogers NJ, Urbina MA, Reardon EE. et al. A new analysis of hypoxia tolerance in fishes using a database of critical oxygen level (Pcrit). Conserv Physiol 2016; 4 (01) cow012 doi:10.1093/conphys/cow012