Planta Med 2022; 88(01): 53-61
DOI: 10.1055/a-1157-1732
Biological and Pharmacological Activity
Original Papers

Antimycobacterial Activity of Alkaloids and Extracts from Tabernaemontana alba and T. arborea

Silvia Laura Guzmán-Gutiérrez
1   CONACyT – Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Mayra Silva-Miranda
1   CONACyT – Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Felix Krengel
2   Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
3   Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Elizabeth Huerta-Salazar
3   Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Mayra León-Santiago
3   Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Jessica Karina Díaz-Cantón
2   Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Ciudad de México, México
3   Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Clara Espitia Pinzón
4   Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
,
Ricardo Reyes-Chilpa
3   Instituto de Química, Universidad Nacional Autónoma de México, Ciudad de México, México
› Author Affiliations
Supported by: Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica PAPIIT, Universidad Nacional Autónoma de México. IG200418
Supported by: Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México

Abstract

Tuberculosis is the main cause of death from a single infectious agent. Globally, according to the World Health Organization, in 2018, there were an estimated 1.2 million tuberculosis deaths. Moreover, there is a continuous appearance of drug-resistant strains. Thus, development of new antituberculosis medicines should receive high priority. Plant-derived natural products are promising candidates for this purpose. We therefore screened alkaloid extracts obtained from the root and stem barks of the Mexican Apocynaceae species Tabernaemontana alba and Tabernaemontana arborea, as well as the pure alkaloids ibogaine, voacangine, and voacamine, tested for activity against Mycobacterium tuberculosis H37Rv and cytotoxicity to mammalian Vero cells using the resazurin microtiter and the MTT assays, respectively. The extracts were analyzed by GC-MS and HPLC-UV. T. arborea root bark alkaloid extract showed the highest activity against M. tuberculosis (MIC100 = 7.8 µg/mL) of the four extracts tested. HPLC suggested that voacangine and voacamine were the major components. The latter was isolated by column chromatography, and its chemical structure was elucidated by 1H and 13C NMR, and MS. Unambiguous assignation was performed by HSQC, HMBC, and NOESY experiments. Voacamine is a dimeric bis-indole-type alkaloid and is 15 times more potent than the monomeric ibogan-type alkaloids ibogaine and voacangine (MIC100 = 15.6, 250.0, and 250.0 µg/mL, respectively). However, all of these compounds showed cytotoxicity to Vero cells, with a poor selectivity index of 1.00, 0.16, and 1.42, respectively. This is the first report of voacamine activity against M. tuberculosis.

Supporting Information



Publication History

Received: 09 January 2020

Accepted: 13 April 2020

Article published online:
11 May 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Tiberi S, Zumla A, Migliori GB. Multidrug and extensively drug-resistant tuberculosis: epidemiology, clinical features, management and treatment. Emerg Infect Dis 2019; 33: 1063-1085
  • 2 Maitre T, Aubry A, Jarlier V, Robert J, Veziris N, Bernard C, Raskine L. Multidrug and extensively drug-resistant tuberculosis. Med Mal Infect 2017; 47: 3-10
  • 3 World Health Organization (WHO). Multidrug-resistant Tuberculosis (MDR-TB). Technical Tips online. Available at (Accessed October 20, 2019): https://www.who.int/tb/challenges/mdr/MDRRR_TB_factsheet_2017.pdf
  • 4 Nguta JM, Appiah-Opong R, Nyarko AK, Yeboah-Manu D, Addo PGA. Current perspectives in drug discovery against tuberculosis from natural products. Int J Mycobacteriol 2015; 4: 165-183
  • 5 Gómez-Cansino R, Guzmán-Gutiérrez SL, Campos-Lara MG, Espitia-Pinzón CI, Reyes-Chilpa R. Natural compounds from mexican medicinal plants as potential drug leads for anti-tuberculosis drugs. An Acad Bras Cienc 2017; 89: 31-43
  • 6 Von Thaden JJ, Laborde J, Guevara S, Venegas-Barrera CS. Forest cover change in the Los Tuxtlas Biosphere Reserve and its future: The contribution of the 1998 protected natural area decree. Land Use Pol 2018; 72: 443-450
  • 7 Guevara S, Meave J, Moreno-Casasola P, Laborde J, Castillo S. Vegetación y flora de potreros en la sierra de los Tuxtlas, México. Acta Botánica Mex 1994; 28: 1-27
  • 8 Argueta A, Cano L, Rodarte ME. eds. Atlas de las Plantas de la Medicina tradicional mexicana. Colección Biblioteca de la Medicina Tradicional Mexicana. México: Instituto Nacional Indigenista; 1994: 481
  • 9 Argueta A, Cano L, Rodarte ME. eds. Atlas de las Plantas de la Medicina tradicional mexicana. Colección Biblioteca de la Medicina Tradicional Mexicana. México: Instituto Nacional Indigenista; 1994: 482
  • 10 Krengel F, Herrera-Santoyo J, Olivera-Flores TJ, Chávez-Ávila VM, Pérez-Flores FJ, Reyes-Chilpa R. Quantification of anti-addictive alkaloids ibogaine and voacangine in in vivo- and in vitro-grown plants of two Mexican Tabernaemontana species. Chem Biodivers 2016; 13: 1730-1737
  • 11 Krengel F, Chevalier Q, Dickinson J, Herrera-Santoyo J, Reyes-Chilpa R. Metabolite profiling of anti-addictive alkaloids from four Mexican Tabernaemontana species and the entheogenic African shrub Tabernanthe iboga (Apocynaceae). Chem Biodivers 2019; 16: e1800506
  • 12 Luo X, Pires D, Aínsa JA, Gracia B, Mulhovo S, Duarte A, Anes E, Ferreira MJU. Antimycobacterial evaluation and preliminary phytochemical investigation of selected medicinal plants traditionally used in Mozambique. J Ethnopharmacol 2011; 137: 114-120
  • 13 Mohamad S, Ismail NN, Parumasivam T, Ibrahim P, Osman HA, Wahab H. Antituberculosis activity, phytochemical identification of Costus speciosus (J. Koenig) Sm., Cymbopogon citratus (DC. Ex Nees) Stapf., and Tabernaemontana coronaria (L.) Willd. and their effects on the growth kinetics and cellular integrity of Mycobacterium tuberculosis H37Rv. BMC Complement Altern Med 2018; 18: 1-14
  • 14 Krengel F, Mijangos MV, Reyes-Lezama M, Reyes-Chilpa R. Extraction and conversion studies of the antiaddictive alkaloids coronaridine, ibogamine, voacangine, and ibogaine from two Mexican Tabernaemontana species (Apocynaceae). Chem Biodivers 2019; 16: e1900175
  • 15 Kingston DGI. Plant anticancer agents VI: Isolation of voacangine, voacamine, and epivoacorine from Tabernaemontana arborea sap. J Pharm Sci 1978; 67: 271-272
  • 16 Taylor WI. The Alkaloids: Chemistry and Physiology, Vol. 11. In: Manske RHF. ed. The Iboga and Voacanga Alkaloids, Chapter 4. New York: Academic Press Publishers; 1968: 79-98
  • 17 Medeiros WLB, Vieira IJC, Mathias L, Braz-Filho R, Leal KZ, Rodrigues-Filho E, Schripsema J. Two known bis-indole alkaloids isolated from Tabernaemontana laeta: complete 1H and 13C chemical shift assignments. Magn Reson Chem 1999; 37: 676-681
  • 18 Wang YQ, Li HX, Liu XC, Zhao JS, Liu RQ, Huai WY, Ding WJ, Zhang TE, Deng Y. One bis-indole alkaloid-voacamine from Voacanga africana Stapf: biological activity evaluation of PTP1B in vitro utilizing enzymology method based on SPRi expriment. Nat Prod Res 2019; 33: 3459-3463
  • 19 Braga RM, Leitáo-Filho HF, Reist FDA. 13C NMR analysis of alkaloids from Peschiera fuchsiaefolia . Phytochem Lett 1984; 23: 175-178
  • 20 Büchi G, Manning RE, Monti SA. Voacamine and voacorine. J Am Chem Soc 1964; 86: 4631-4641
  • 21 Chaverri-Chaverri C, Cicció-Alberti JF. Seed alkaloids of Tabernaemontana arborea (Apocynaceae). Rev Latinoam Química 1980; 11: 64
  • 22 Collera O, Walls F, Sandoval A, García F, Herrán J, Pérez-Amador MC. Alcaloides de Especies de Stemmadenia – II. Boletín del Inst Química Univ Nac Autónoma México 1962; 14: 3-18
  • 23 Van Beek TA, Verpoorte R, Svendsen AB, Leeuwenberg AJM, Bisset NG. Tabernaemontana L. (Apocynaceae): a review of its taxonomy, phytochemistry, ethnobotany and pharmacology. J Ethnopharmacol 1984; 10: 1-156
  • 24 Janot MM, Goutarel R. Alcaloides des Voacanga: voacamtne et vobtustne. Compt Rend Acad Sci 1955; 240: 1719-1720
  • 25 La Barre J. Enhancement of the cardiotonic effects of voacamine sulfate in the presence of aminophylline and heptaminol hydrochloride. C R Seances Soc Biol Fil 1955; 149: 2263-2264
  • 26 Iwu MM. Handbook of African medicinal Plants. 2nd edition. London: CRC Press; 1993: 183-184
  • 27 Neuwinger HD. African Traditional Medicine: a Dictionary of Plant Use and Applications, 4th edition. Stuttgart, Germany: Medpharm Scientific; 2000
  • 28 Chen HM, Yang YT, Li HX, Cao ZX, Dan XM, Mei L, Guo DL, Song CX, Dai Y, Hu J, Deng Y. Cytotoxic monoterpenoid indole alkaloids isolated from the barks of Voacanga africana Staph. Nat Prod Res 2016; 30: 1144-1149
  • 29 Ramanitrahasimbola D, Rasoanaivo P, Ratsimamanga-Urverg S, Federici E, Palazzino G, Galeffi C, Nicoletti M. Biological activities of the plant-derived bisindole voacamine with reference to malaria. Phytother Res 2001; 15: 30-33
  • 30 Mukherjee B, Mukhopadhyay R, Bannerjee B, Chowdhury S, Mukherjee S, Naskar K, Allam US, Chakravortty D, Sundar S, Dujardin JC, Roy S. Antimony-resistant but not antimony-sensitive Leishmania donovani up-regulates host IL-10 to overexpress multidrug-resistant protein 1. Proc Natl Acad Sci U S A 2013; 110: E575-E582
  • 31 Condello M, Cosentino D, Corinti S, Di Felice G, Multari G, Gallo FR, Arancia G, Meschini S. Voacamine modulates the sensitivity to doxorubicin of resistant osteosarcoma and melanoma cells and does not induce toxicity in normal fibroblasts. J Nat Prod 2014; 77: 855-862
  • 32 Currais A, Chiruta C, Goujon-Svrzic M, Costa G, Santos T, Batista MT, Paiva J, do Céu Madureira M, Maher P. Screening and identification of neuroprotective compounds relevant to Alzheimerʼs disease from medicinal plants of S. Tomé e Príncipe. J Ethnopharmacol 2014; 155: 830-840
  • 33 Rastogi N, Abaul J, Goh KS, Devallois A, Philogène E, Bourgeois P. Antimycobacterial activity of chemically defined natural substances from the Caribbean flora in Guadeloupe. FEMS Immunol Med Microbiol 1998; 20: 267-273
  • 34 Garcellano RC, Cort JR, Moinuddin SGA, Franzblau SG, Ma R, Aguinaldo AM. An iboga alkaloid chemotaxonomic marker from endemic Tabernaemontana ternifolia with antitubercular activity. Nat Prod Res 2019; 17: 1-5
  • 35 Chaiyana W, Schripsema J, Ingkaninan K, Okonogi S. 3′-R/S-hydroxyvoacamine, a potent acetylcholinesterase inhibitor from Tabernaemontana divaricata . Phytomedicine 2013; 20: 543-548
  • 36 Collins LA, Franzblau SG. Microplate Alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium . Antimicrob Agents Chemother 1997; 41: 1004-1009
  • 37 Martínez R, Nieves Zamudio GJ, Pretelin-Castillo G, Torres-Ochoa RO, Medina-Franco JL, Espitia Pinzón CI, Silva Miranda M, Hernández E, Alanís-Garza B. Synthesis and antitubercular activity of new N-[5-(4-chlorophenyl)-1,3,4-oxadiazol-2-yl]-(nitroheteroaryl)carboxamides. Heterocycl Commun 2019; 25: 52-59
  • 38 Trenado-Uribe M, Silva-Miranda M, Rivero-Cruz JF, Rodríguez-Peña K, Espitia-Pinzón CI, Rodríguez-Sanoja R, Sánchez S. Antimycobacterial activity of an anthracycline produced by an endophyte isolated from Amphipterygium adstringens . Mol Biol Rep 2018; 45: 2563-2570
  • 39 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63