Subscribe to RSS
DOI: 10.1055/a-1157-9463
Investigation of Antiplasmodial Effects of Terpenoid Compounds Isolated from Myrrh
Supported by: Apothekerstiftung Westfalen-LippePublication History
received 02 December 2019
revised 25 March 2020
accepted 04 April 2020
Publication Date:
04 May 2020 (online)
Abstract
As part of our ongoing search for antiprotozoal natural products from plants, we examined different resins from the Burseraceae family. The dichloromethane extract obtained from myrrh, the oleo-gum-resin of Commiphora species, showed promising in vitro activity against Plasmodium falciparum with an IC50 value of 1 µg/mL. Bioactivity-guided fractionation led to the isolation and characterization of 18 sesquiterpenoids, namely, β-elemene (1), elemyl acetate (2), curzerenone (3), 8-hydroxyisogermafurenolide (4), 2-methoxyisogermafurenolide (5), 8-epi-2-methoxyisogermafurenolide (6), furanodienone (7), 1(10)Z,4Z-furanodien-6-one (8), rel-2R-methyl-5S-acetoxy-4R-furanogermacr-1(10)Z-en-6-one (9), (1(10)E)-2-methoxy-8,12-epoxygermacra-1(10),7,11-trien-6-one (10), 2R-methoxyfuranodiene (11), 2-acetyloxyglechomanolide (12), 8-epi-2-acetyloxyglechomanolide (13), (1R,2R,4S)-1,2-epoxyfuranogermacr-10(15)-en-6-one (14), hydroxylindestrenolide (15), isohydroxylindestrenolide (16), myrrhone (17), and myrrhterpenoid O (18). Moreover, nine (nor-)triterpenoids were isolated: mansumbinol (19), mansumbinol epoxide (20), mansumbinone (21), mansumbin-13(17)-en-3,16-dione (22), 3,4-seco-mansumbinoic acid (23), rel-20S-hydroxy-dammar-24-en-3,16-dione (24), rel-(16S,20S)-dihydroxydammar-24-en-3-one (25), cycloart-24-en-1α,2α,3β-triol (26), and 3β-isovaleroyloxycycloart-24-en-1α,2α-diol (27). All compounds were identified by MS and NMR spectroscopic analyses. To the best of our knowledge, compounds 5, 6, 12, 13, 16, 18, and 20 are reported for the first time. All isolated compounds were tested in vitro for activity against P. falciparum and cytotoxicity. The sesquiterpene 7 and the triterpene 25 were the most active compounds found in this study with IC50 values of 7.4 and 2.8 µM, respectively.
Key words
Myrrh - Commiphora - Plasmodium falciparum - antiprotozoal activity - Burseraceae - terpenoidsSupporting Information
- Supporting Information
Analytical data of known compounds in comparison with literature data, bioactivity data of extracts and main fractions (Tables 1S–3S), spectroscopic data and molecular models with key NOESY correlations for compounds 5, 6, 12, 13, 15, 16, 18, 20, and 24 (Figs. 1S–48S; copies of further original spectra are available from the corresponding author), and dose-effect diagrams from the biological tests of all compounds for antiplasmodial and cytotoxic activity (Figs. 49S and 50S, respectively) are available as Supporting Information.
-
References
- 1 Schmidt TJ, Khalid SA, Romanha AJ, Alves TMA, Biavatti MW, Brun R, Da Costa FB, de Castro SL, Ferreira VF, de Lacerda MVG, Lago JHG, Leon LL, Lopes NP, das Neves Amorim RC, Niehues M, Ogungbe IV, Pohlit AM, Scotti MT, Setzer WN, de Soeiro MNC, Steindel M, Tempone AG. The potential of secondary metabolites from plants as drugs or leads against protozoan neglected diseases – Part I. Curr Med Chem 2012; 19: 2128-2175
- 2 Europäisches Arzneibuch 7.0: Amtliche deutsche Ausgabe. Stuttgart: Deutscher Apotheker Verlag; 2013
- 3 USP 38 – NF 33 The United States Pharmacopeia and National Formulary 2015. Main Edition plus Supplements 1 and 2. 1. Aufl.. Stuttgart: Deutscher Apotheker Verlag; 2014
- 4 Tucker AO. Frankincense and myrrh. Econ Bot 1986; 40: 425-433
- 5 Ashry KM, El-Sayed YS, Khamiss RM, El-Ashmawy IM. Oxidative stress and immunotoxic effects of lead and their amelioration with myrrh (Commiphora molmol) emulsion. Food Chem Toxicol 2010; 48: 236-241
- 6 Shen T, Li GH, Wang XN, Lou HX. The genus Commiphora: a review of its traditional uses, phytochemistry and pharmacology. J Ethnopharmacol 2012; 142: 319-330
- 7 Llurba Montesino N, Kaiser M, Brun R, Schmidt TJ. Search for antiprotozoal activity in herbal medicinal preparations; new natural leads against neglected tropical diseases. Molecules 2015; 20: 14118-14138
- 8 Greve HL, Kaiser M, Brun R, Schmidt TJ. Terpenoids from the oleo-gum-resin of Boswellia serrata and their antiplasmodial effects in vitro . Planta Med 2017; 83: 1214-1226
- 9 Brauchli R, Thomas AF. Comment on sesquiterpene composition of basil oil. Assignment of the proton and carbon-13 NMR spectra of beta-elemene with two-dimensional NMR. J Agric Food Chem 1991; 39: 431
- 10 Bedrossian AG, Beauchamp PS, Bernichi B, Dev V, Kitaw KZ, Rechtshaffen H, Bottini AT, Hope H. Analysis of North American Chenopodium botrys essential oil. Isolation and structure of two new sesquiterpene alcohols. J Essent Oil Res 2001; 13: 393-400
- 11 Ganter C, Keller-Wojtkiewicz FB. Pyrolysen- und Hydrierungsversuche in der Elemol- und Dihydrogeijeren-Reihe. HCA 1971; 54: 183-206
- 12 Maradufu A, Warthen JD. Furanosesquiterpenoids from Commiphora myrrh oil. Plant Sci 1988; 57: 181-184
- 13 Zhu N, Kikuzaki H, Sheng S, Sang S, Rafi MM, Wang M, Nakatani N, DiPaola RS, Rosen RT, Ho CT. Furanosesquiterpenoids of Commiphora myrrha . J Nat Prod 2001; 64: 1460-1462
- 14 Xu J, Guo Y, Li Y, Zhao P, Liu C, Ma Y, Gao J, Hou W, Zhang T. Sesquiterpenoids from the resinous exudates of Commiphora myrrha and their neuroprotective effects. Planta Med 2011; 77: 2023-2028
- 15 Dekebo A, Dagne E, Sterner O. from Commiphora sphaerocarpa and related adulterants of true myrrh. Fitoterapia 2002; 73: 48-55
- 16 Friedrich D, Bohlmann F. Total synthesis of various elemanolides. Tetrahedron 1988; 44: 1369-1392
- 17 Chokchaisiri R, Pimkaew P, Piyachaturawat P, Chalermglin R, Suksamrarn A. Cytotoxic sesquiterpenoids and diarylheptanoids from the rhizomes of Curcuma elata Roxb. Rec Nat Prod 2014; 8: 46-50
- 18 Brieskorn CH, Noble P. Furanosesquiterpenes from the essential oil of myrrh. Phytochemistry 1983; 22: 1207-1211
- 19 Dekebo A, Dagne E, Hansen LK, Gautun OR, Aasen AJ. Crystal structures of two furanosesquiterpenes from Commiphora sphaerocarpa . Tetrahedron Lett 2000; 41: 9875-9878
- 20 Zhu N, Sheng S, Sang S, Rosen RT, Ho CT. Isolation and characterization of several aromatic sesquiterpenes from Commiphora myrrha . Flavour Fragr J 2003; 18: 282-285
- 21 Günther H. NMR Spectroscopy: Basic Principles, Concepts, and Applications in Chemistry, 3rd completely revised and updated Edition. Weinheim: Wiley-VCH; 2013: 131
- 22 Monti D, Manitto P, Tagliapietra S, Dada G, Speranza G. The absolute stereochemistry of two furanogermacranes of myrrh as determined by the circular-dichroism exciton chirality method. Gazz Chim Ital 1986; 116: 303-306
- 23 Stahl E, Datta SN. Neue sesquiterpenoide Inhaltsstoffe der Gundelrebe (Glechoma hederacea L.). Justus Liebigs Ann Chem 1972; 757: 23-32
- 24 Takeda K, Horibe I, Minato H. Components of the root of Lindera strychnifolia Vill. Part XIV. Sesquiterpene lactones from the root of Lindera strychnifolia Vill. J Chem Soc. Lond 1968; 5: 569-572
- 25 Qiang Y, Yang ZD, Yang JL, Gao K. Sesquiterpenoids from the root tubers of Lindera aggregata . Planta Med 2011; 77: 1610-1616
- 26 Shen T, Wan WZ, Wang XN, Yuan HQ, Ji M, Lou HX. A triterpenoid and sesquiterpenoids from the resinous exudates of Commiphora myrrha . HCA 2009; 92: 645-652
- 27 Duh CY, Chen KJ, El-Gamal AAH, Dai CF. Sesquiterpenes from the formosan stolonifer Tubipora musica . J Nat Prod 2001; 64: 1430-1433
- 28 Xu J, Guo Y, Zhao P, Guo P, Ma Y, Xie C, Jin DQ, Gui L. Four new sesquiterpenes from Commiphora myrrha and their neuroprotective effects. Fitoterapia 2012; 83: 801-805
- 29 Dekebo A, Dagne E, Hansen LK, Gautun OR, Aasen AJ. Two octanordammarane triterpenes from Commiphora kua . Phytochemistry 2002; 59: 399-403
- 30 Manguro LOA, Opiyo SA, Herdtweck E, Lemmen P. Triterpenes of Commiphora holtziana oleo-gum resin. Can J Chem 2009; 87: 1173-1179
- 31 Rahman MM, Garvey M, Piddock LJV, Gibbons S. Antibacterial terpenes from the oleo-resin of Commiphora molmol (Engl.). PTR 2008; 22: 1356-1360
- 32 Provan GJ, Waterman PG. The mansumbinanes: Octanordammaranes from the resin of Commiphora incisa . Phytochemistry 1986; 25: 917-922
- 33 Provan GJ, Gray AI, Waterman PG. Mansumbinane derivatives from stem bark of Commiphora kua . Phytochemistry 1992; 31: 2065-2068
- 34 Shen T, Wan W, Yuan H, Kong F, Guo H, Fan P, Lou H. Secondary metabolites from Commiphora opobalsamum and their antiproliferative effect on human prostate cancer cells. Phytochemistry 2007; 68: 1331-1337
- 35 Shen T, Yuan HQ, Wan WZ, Wang XL, Wang XN, Ji M, Lou HX. Cycloartane-type triterpenoids from the resinous exudates of Commiphora opobalsamum . J Nat Prod 2008; 71: 81-86
- 36 Fattorusso E, Santacroce C, Xaasan CF. Dammarane triterpenes from the resin of Boswellia freerana . Phytochemistry 1985; 24: 1035-1036
- 37 Schmidt TJ, Nour AMM, Khalid SA, Kaiser M, Brun R. Quantitative structure-antiprotozoal activity relationships of sesquiterpene lactones. Molecules 2009; 14: 2062-2076
- 38 Nour AMM, Khalid SA, Kaiser M, Brun R, Abdalla WE, Schmidt TJ. The antiprotozoal activity of methylated flavonoids from Ageratum conyzoides L. J Ethnopharmacol 2010; 129: 127-130
- 39 Biavatti MW. Synergy: an old wisdom, a new paradigm for pharmacotherapy. Phytomedicine 2009; 45: 371-378
- 40 Williamson EM. Synergy and other interactions in phytomedicines. Phytomedicine 2001; 8: 401-409
- 41 Nour AMM, Khalid SA, Kaiser M, Brun R, Abdallah WE, Schmidt TJ. The antiprotozoal activity of sixteen asteraceae species native to Sudan and bioactivity-guided isolation of xanthanolides from Xanthium brasilicum . Planta Med 2009; 75: 1363-1368
- 42 Huber W, Koella JC. A comparison of three methods of estimating EC50 in studies of drug resistance of malaria parasites. Acta Trop 1993; 55: 257-261
- 43 Molecular Devices Cooperation. Softmax Pro Software. Available at: https://www.moleculardevices.com/products/microplate-readers/acquisition-and-analysis-software/softmax-pro-software Accessed April 24, 2020
- 44 Hochmannová J, Novotný L, Herout V. On terpenes. CXXXVIII. Sesquiterpenic hydrocarbons from coltsfoot rhizomes (Petasites officinalis MOENCH.). Collect Czech Chem Commun 1962; 27: 1870-1876