Subscribe to RSS
DOI: 10.1055/a-1167-4434
Rektumkarzinom – Robotic Setup, Port Placement, strukturierte OP-Schritte
Rectal Cancer – Robotic Setup, Port Placement, Structured Surgical StepsPublication History
Publication Date:
04 June 2020 (online)
Zusammenfassung
Die robotische tiefe anteriore Rektumresektion beim Rektumkarzinom findet zunehmend Verbreitung in Europa. Es ergeben sich sowohl onkologisch als auch funktionell potenzielle Vorteile gegenüber dem konventionellen laparoskopischen Zugang. Die neue Generation der Operationsroboter, insbesondere das Da-Vinci-Xi-System von Intuitive, erweitert die Möglichkeiten des robotischen Zuganges, insbesondere bei der Mobilisation der linken Kolonflexur. Dementsprechend kann die tiefe anteriore Resektion sicher, komplikationsarm und ohne Hybridunterstützung robotisch durchgeführt werden. In der vorliegenden Arbeit werden das Setup des Roboters, das Port Placement und die Operationsschritte bei der robotischen tiefen anterioren Resektion beschrieben. Hierbei werden sowohl die Besonderheiten des Da-Vinci-Xi- als auch des -X-Systems hervorgehoben. Potenzielle Vorteile gegenüber dem laparoskopischen Zugang durch eine bessere 3-dimensionale Visualisierung des Operationssitus durch eine Erhöhung der Bewegungsfreiheitsgrade und durch eine erhöhte Präzision der Instrumentenführung können zu verbesserten Resultaten der Rektumchirurgie führen. Bisher ist die Evidenz allerdings zu schwach, um die robotische tiefe anteriore Rektumresektion als Standardzugang beim Rektumkarzinom zu empfehlen.
Abstract
Robotic low anterior resection in rectal carcinoma is becoming increasing common in Europe. There may be oncological and functional advantages as compared to laparoscopic approaches. The new generation of surgical robots, such as the Da Vinci Xi systems from Intuitive, enlarges the range of robotic access, especially in the mobilisation of the left flexure. Thus, robotic low anterior resection can now be performed safely, with low morbidity and without hybrid support. In this paper, the setup of the robotic system, port placement and surgical steps of robotic low anterior rectal resection are explained. Special features of Da Vinci Xi- and -X-systems are emphasised. Potential advantages of the robotic access – such as 3-dimensional visualisation of the surgical field, wrist-like movements of instruments and increased precision – may provide better results in rectal surgery than with laparoscopic access. Nevertheless, the evidence is still too weak to recommend robotic low anterior resection as the standard procedure in rectal cancer.
-
Literatur
- 1 Panis Y, Maggiori L, Caranhac G. et al. Mortality after colorectal cancer surgery: a French survey of more than 84,000 patients. Ann Surg 2011; 254: 738-743
- 2 Schwenk W, Haase O, Neudecker J. et al. Short term benefits for laparoscopic colorectal resection. Cochrane Database Syst Rev 2005; (03) CD003145
- 3 van der Pas MH, Haglind E, Cuesta MA. et al. Laparoscopic versus open surgery for rectal cancer (COLOR II): short-term outcomes of a randomised, phase 3 trial. Lancet Oncol 2013; 14: 210-218 doi:10.1016/S1470-2045(13)70016-0
- 4 Bonjer HJ, Deijen CL, Abis GA. et al. A randomized trial of laparoscopic versus open surgery for rectal cancer. N Engl J Med 2015; 372: 1324-1332 doi:10.1056/NEJMoa1414882
- 5 van der Pas MHGM, Deijen CL, Abis GSA. et al. Conversions in laparoscopic surgery for rectal cancer. Surg Endosc 2017; 31: 2263-2270 doi:10.1007/s00464-016-5228-8
- 6 Ghadban T, Reeh M, Bockhorn M. et al. Minimally invasive surgery for colorectal cancer remains underutilized in Germany despite its nationwide application over the last decade. Sci Rep 2018; 8: 15146
- 7 Veltcamp Helbach M, van Oostendorp SE, Koedam TWA. et al. Structured training pathway and proctoring; multicenter results of the implementation of transanal total mesorectal excision (TaTME) in the Netherlands. Surg Endosc 2020; 34: 192-201 doi:10.1007/s00464-019-06750-w
- 8 Larsen SG, Pfeffer F, Kørner H. Norwegian moratorium on transanal total mesorectal excision. Br J Surg 2019; 106: 1120-1121 doi:10.1002/bjs.11287
- 9 Wasmuth HH, Faerden AE, Myklebust TÅ. et al. Transanal total mesorectal excision for rectal cancer has been suspended in Norway. Br J Surg 2020; 107: 121-130 doi:10.1002/bjs.11459
- 10 Perez D, Melling N, Biebl M. et al. Robotic low anterior resection versus transanal total mesorectal excision in rectal cancer: a comparison of 115 cases. Eur J Surg Oncol 2018; 44: 237-242 doi:10.1016/j.ejso.2017.11.011
- 11 Halabi WJ, Kang CY, Jafari MD. et al. Robotic-assisted colorectal surgery in the United States: a nationwide analysis of trends and outcomes. World J Surg 2013; 37: 2782-2790 doi:10.1007/s00268-013-2024-7
- 12 Staderini F, Foppa C, Minuzzo A. et al. Robotic rectal surgery: State of the art. World J Gastrointest Oncol 2016; 8: 757-771
- 13 Toh JWT, Kim SH. Port positioning and docking for single-stage totally robotic dissection for rectal cancer surgery with the Si and Xi Da Vinci Surgical System. J Robot Surg 2018; 12: 545-548 doi:10.1007/s11701-017-0760-7
- 14 Toh JWT, Zakaria A, Yang I. et al. Totally robotic single docking low anterior resection for rectal cancer: pearls and pitfalls. Tech Coloproctol 2017; 21: 893-895 doi:10.1007/s10151-017-1709-6
- 15 Protyniak B, Jorden J, Farmer R. Multiquadrant robotic colorectal surgery: the da Vinci Xi vs. Si comparison. J Robot Surg 2018; 12: 67-74 doi:10.1007/s11701-017-0689-x
- 16 Hill A, McCormick J. In experienced hands, does the robotic platform impact operative efficiency? Comparison of the da Vinci Si versus Xi robot in colorectal surgery. J Robot Surg 2020;
- 17 Huang YM, Huang YJ, Wei PL. Colorectal cancer surgery using the Da Vinci Xi and Si Systems: comparison of perioperative outcomes. Surg Innov 2019; 26: 192-200 doi:10.1177/1553350618816788
- 18 Perez D, Woestemeier A, Ghadban T. et al. Standardisierte Zugangsoptionen für die kolorektale Chirurgie mit dem Da-Vinci-Xi-System. Chirurg 2019; 90: 1003-1010 doi:10.1007/s00104-019-0973-6
- 19 Araujo SE, Seid VE, Kim NJ. et al. Assessing the extent of colon lengthening due to splenic flexure mobilization techniques: a cadaver study. Arq Gastroenterol 2012; 49: 219-222
- 20 Benseler V, Hornung M, Iesalnieks I. et al. Different approaches for complete mobilization of the splenic flexure during laparoscopic rectal cancer resection. Int J Colorectal Dis 2012; 27: 1521-1529
- 21 Kumamoto T, Shinohara H, Tomizawa K. et al. Inferior pancreatic approach for laparoscopic splenic flexure mobilization. Tech Coloproctol 2018; 22: 71-72
- 22 Knol JJ, Wexner SD, Vangertruyden G. Laparoscopic mobilization of the splenic flexure: the use of color-grading as a unique teaching tool. Surg Endosc 2015; 29: 734-735
- 23 Anthuber M, Kriening B, Schrempf M. et al. Technik der laparoskopischen Rektumresektion. Chirurg 2016; 87: 560-566
- 24 Prete FP, Pezzolla A, Prete F. et al. Robotic versus laparoscopic minimally invasive surgery for rectal cancer: a systematic review and meta-analysis of randomized controlled trials. Ann Surg 2018; 267: 1034-1046
- 25 Pedziwiatr M, Małczak P, Mizera M. et al. There is no difference in outcome between laparoscopic and open surgery for rectal cancer: a systematic review and meta-analysis on short- and long-term oncologic outcomes. Tech Coloproctol 2017; 21: 595-604 doi:10.1007/s10151-017-1662-4
- 26 Jayne D, Pigazzi A, Marshall H. et al. Effect of robotic-assisted vs. conventional laparoscopic surgery on risk of conversion to open laparotomy among patients undergoing resection for rectal cancer: the ROLARR randomized clinical trial. JAMA 2017; 318: 1569-1580 doi:10.1001/jama.2017.7219
- 27 Holmer C, Kreis ME. Systematic review of robotic low anterior resection for rectal cancer. Surg Endosc 2018; 32: 569-581 doi:10.1007/s00464-017-5978-y
- 28 Kim MJ, Park SC, Park JW. et al. Robot-assisted versus laparoscopic surgery for rectal cancer: a phase II open label prospective randomized controlled trial. Ann Surg 2018; 267: 243-251 doi:10.1097/SLA.0000000000002321