Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48(04): 262-267
DOI: 10.1055/a-1197-5339
Übersichtsartikel

Messung der Körpertemperatur beim Rind – eine altbewährte Methode kritisch hinterfragt

Taking body temperature in cattle – critical evaluation of an established diagnostic test
Carola Fischer-Tenhagen
Tierklinik für Fortpflanzung, Fachbereich Veterinärmedizin, Freie Universität Berlin, Berlin
,
Sebastian P. Arlt
› Author Affiliations

Zusammenfassung

Die Messung der Körperkerntemperatur ist ein essenzieller Bestandteil der klinischen Untersuchung des Rindes. Neben dem Einsatz zur Diagnostik von Erkrankungen wurde die Erfassung der Temperatur in der Praxis und in wissenschaftlichen Studien zur Ermittlung des Östrus, der Vorhersage des Kalbebeginns und zur Erkennung von Hitzestress verwendet. Anhand einer systematischen Literaturübersicht gibt dieser Artikel einen Überblick über die Eignung verschiedener Temperaturmessverfahren, wie die rektale Messung, das Einlegen von Temperaturloggern in Vagina und Pansen, die Milchtemperaturmessung und die Messung der Körperoberflächentemperatur. Auch wenn die Messung der Körpertemperatur eine viel genutzte und anerkannte diagnostische Methode ist, zeigt ein genauerer Blick auf die hier zusammengestellten Studien, dass es vielfältige Einflussfaktoren auf die Messergebnisse gibt. Die Varianzen der einzelnen Methoden bekräftigen, dass neu entwickelte Methoden immer kritisch hinterfragt und evaluiert werden müssen. Bezogen auf konkrete Grenzwerte, beispielsweise der Definition, dass ab 39,5°C Fieber vorliegt, kommt der Messgenauigkeit eine hohe Bedeutung zu, da die ermittelte Körpertemperatur einen großen Einfluss auf tierärztliche Therapieentscheidungen hat.

Abstract

Measuring the body temperature is an essential component of the clinical examination of bovines. Next to its value for the diagnosis of diseases, body temperature also is an important value in clinical studies concerning estrus detection, calving time point prediction, or the evaluation of heat stress. This systematic review critically evaluates different methods of measuring bovine body temperature including rectal measurement, vaginal or ruminal temperature loggers, milk temperature, and infrared body surface thermography. Although body temperature measurement is a commonly employed and established diagnostic test, a close look at scientific studies displays multiple factors influencing body temperature data. The variability of results emphasizes the relevance of critically evaluating new measuring methods before introducing them into research or routine practice. Especially in terms of identifying specific cut-off values, i. e. for fever defined as body temperature > 39.5°C, the precision of the method is of importance, as the acquired values possess a high degree of influence on the veterinary decision taking process.



Publication History

Received: 14 April 2020

Accepted: 29 April 2020

Article published online:
21 August 2020

© Georg Thieme Verlag KG
Stuttgart · New York

 
  • Literatur

  • 1 Heuwieser W, Burfeind O. Studien zur Genauigkeit postpartaler Untersuchungen beim Rind. Tierarztl Prax Ausg G Grosstiere Nutztiere 2012; 40: 251-254 https://www.ncbi.nlm.nih.gov/pubmed/22911232
  • 2 McKenna SLB, Dohoo IR. Using and interpreting diagnostic tests. Vet Clin North Am Food Anim Pract 2006; 22: 195-205 doi:10.1016/j.cvfa.2005.12.006
  • 3 Rosenberger G. Die klinische Untersuchung des Rindes. 4. Aufl.. Stuttgart: Enke; 2012
  • 4 Smith BI, Risco CA. Management of periparturient disorders in dairy cattle. Vet Clin North Am Food Anim Pract 2005; 21: 503-521 doi:10.1016/j.cvfa.2005.02.007
  • 5 Fisher AD, Morton R, Dempsey JMA. et al. Evaluation of a new approach for the estimation of the time of the LH surge in dairy cows using vaginal temperature and electrodeless conductivity measurements. Theriogenology 2008; 70: 1065-1074
  • 6 Burfeind O, Suthar VS, Voigtsberger R. et al. Validity of prepartum changes in vaginal and rectal temperature to predict calving in dairy cows. J Dairy Sci 2011; 94: 5053-5061
  • 7 Ammer S, Lambertz C, Gauly M. Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions. J Dairy Res 2016; 83: 165-172 doi:10.1017/S0022029916000182
  • 8 Piccione G, Refinetti R. Thermal chronobiology of domestic animals. Front Biosci 2003; 8: S258-S264 doi:10.2741/1040
  • 9 Benzaquen ME, Risco CA, Archbald LF. et al. Rectal temperature, calving-related factors, and the incidence of puerperal metritis in postpartum dairy cows. J Dairy Sci 2007; 90: 2804-2814
  • 10 Wagner SA, Schimeck DE, Chend FC. Body temperature and white blood cell count in postpartum dairy cows. Bovine Pract 2007; 42: 18-26
  • 11 Sheldon IM, Williams EJ, Miller ANA. et al. Uterine diseases in cattle after parturition. Vet J 2008; 176: 115-121
  • 12 Suthar V, Burfeind O, Bonk S. et al. Factors associated with body temperature of healthy Holstein dairy cows during the first 10 days in milk. J Dairy Res 2012; 79: 135-142
  • 13 Firk R, Stamer E, Junge W. et al. Automation of oestrus detection in dairy cows: a review. Livest Prod Sci 2002; 75: 219-232
  • 14 Suthar V, Burfeind O, Maeder B. et al. Agreement between rectal and vaginal temperature measured with temperature loggers in dairy cows. J Dairy Res 2013; 80: 240-245
  • 15 Bewley JM, Einstein ME, Grott MW. et al. Comparison of reticular and rectal core body temperatures in lactating dairy cows. J Dairy Sci 2008; 91: 4661-4672
  • 16 Lee Y, Bok JD, Lee HJ. et al. Body temperature monitoring using subcutaneously implanted thermo-loggers from holstein steers. Asian Austral J Anim 2016; 29: 299-306
  • 17 Pohl A, Heuwieser W, Burfeind O. Technical note: Assessment of milk temperature measured by automatic milking systems as an indicator of body temperature and fever in dairy cows. J Dairy Sci 2014; 97: 4333-4339 doi:10.3168/jds.2014–7997
  • 18 Burfeind O, von Keyserlingk MAG, Weary DM. et al. Short communication: Repeatability of measures of rectal temperature in dairy cows. J Dairy Sci 2010; 93: 624-627
  • 19 Naylor JM, Streeter RM, Torgerson P. Factors affecting rectal temperature measurement using commonly available digital thermometers. Res Vet Sci 2012; 92: 121-123 doi:10.1016/j.rvsc.2010.10.027
  • 20 Vickers LA, Burfeind O, von Keyserlingk MAG. et al. Technical note: Comparison of rectal and vaginal temperatures in lactating dairy cows. J Dairy Sci 2010; 93: 5246-5251
  • 21 Burdick NC, Carroll JA, Dailey JW. et al. Development of a self-contained, indwelling vaginal temperature probe for use in cattle research. J Therm Biol 2012; 37: 339-343
  • 22 Sievers AK, Suedekum KH, Lane HJ. et al. Development of an intraruminal device for data sampling and transmission. J Dairy Sci 2005; 88: 337-338
  • 23 AlZahal O, AlZahal H, Steele MA. et al. The use of a radiotelemetric ruminal bolus to detect body temperature changes in lactating dairy cattle. J Dairy Sci 2011; 94: 3568-3574
  • 24 Hicks LC, Hicks WS, Bucklin RA. et al. Comparison of methods of measuring deep body temperatures of dairy cows. In: Livestock Environment VI: Proc 6th Int Symp ASAE Louisville; Kentucky, USA: 2001: 432-438
  • 25 McManus C, Tanure CB, Peripolli V. et al. Infrared thermography in animal production: An overview. Comput Electron Agr 2016; 123: 10-16
  • 26 Montanholi YR, Odongo NE, Swanson KC. et al. Application of infrared thermography as an indicator of heat and methane production and its use in the study of skin temperature in response to physiological events in dairy cattle (Bos taurus). J Therm Biol 2008; 33: 468-475
  • 27 Hoffmann G, Schmidt M, Ammon C. et al. Monitoring the body temperature of cows and calves using video recordings from an infrared thermography camera. Vet Res Commun 2013; 37: 91-99
  • 28 Venjakob PL, Borchardt S, Thiele G. et al. Evaluation of ear skin temperature as a cow-side test to predict postpartum calcium status in dairy cows. J Dairy Sci 2016; 99: 6542-6549
  • 29 Alsaaod M, Syring C, Dietrich J. et al. A field trial of infrared thermography as a non-invasive diagnostic tool for early detection of digital dermatitis in dairy cows. Vet J 2014; 199: 281-285
  • 30 Pezeshki A, Stordeur P, Wallemacq H. et al. Variation of inflammatory dynamics and mediators in primiparous cows after intramammary challenge with Escherichia coli. Vet Res 2011; 42
  • 31 Polat B, Colak A, Cengiz M. et al. Sensitivity and specificity of infrared thermography in detection of subclinical mastitis in dairy cows. J Dairy Sci 2010; 93: 3525-3532
  • 32 Stewart M, Wilson MT, Schaefer AL. et al. The use of infrared thermography and accelerometers for remote monitoring of dairy cow health and welfare. J Dairy Sci 2017; 100: 3893-3901
  • 33 Macmillan K, Colazo MG, Cook NJ. Evaluation of infrared thermography compared to rectal temperature to identify illness in early postpartum dairy cows. Res Vet Sci 2019; 125: 315-322 doi:10.1016/j.rvsc.2019.07.017
  • 34 Westermann S, Stanek C, Schramel JP. et al. The effect of airflow on thermographically determined temperature of the distal forelimb of the horse. Equine Vet J 2013; 45: 637-641
  • 35 Prendiville DJ, Lowe J, Early B. et al. Radiotelemetry systems for measuring body temperature. Beef Prod Series 2002; 57: 2–1
  • 36 McCorkell R, Wynne-Edwards K, Windeyer C. et al. Limited efficacy of Fever Tag® temperature sensing ear tags in calves with naturally occurring bovine respiratory disease or induced bovine viral diarrhea virus infection. Can Vet J 2014; 55: 68
  • 37 Ball PJH, Morant SV, Cant EJ. Measurement of milk temperature as an aid to oestrus detection in dairy cattle. J Agri Sci 1978; 91: 593-597
  • 38 West JW, Hill GM, Fernandez JM. et al. Effects of dietary fiber on intake, milk yield, and digestion by lactating dairy cows during cool or hot, humid weather. J Dairy Sci 1999; 82: 2455-2465
  • 39 McArthur AJ, Easdon MP, Gregson K. Milk temperature and detection of oestrus in dairy cattle. J Agri Engi Res 1992; 51: 29-46
  • 40 Sannmann I, Burfeind O, Voigtsberger R. et al. Comparison of two monitoring and treatment strategies for cows with acute puerperal metritis. Theriogenology 2013; 79: 961-969