Subscribe to RSS
DOI: 10.1055/a-1199-8496
Neue lipidsenkende Substanzen
New Lipid-lowering AgentsGerade bei kardiovaskulären Hochrisikopatienten reicht eine Statintherapie allein häufig nicht aus, um optimale LDL-C-Werte zu erreichen. Welche Optionen derzeit bestehen – auch mit Blick auf Hypertriglyzeridämie und Lipoprotein(a)-Erhöhung – und wie die jeweilige aktuelle Studienlage zu den einzelnen Substanzen bzw. Kombinationstherapien aussieht, zeigt dieser Beitrag.
Abstract
Atherosclerotic cardiovascular disease (ASCVD) remains a leading cause of morbidity and mortality. The fact that elevated levels of low-density lipoprotein-cholesterol (LDL-C) play a causal role in the development of ASCVD is now well accepted, given the results of numerous epidemiological and genetic studies, as well as randomized controlled clinical trials. Statins have become a primary therapeutic cornerstone in ASCVD prevention since they have been shown to reduce CV events by reducing levels of LDL-C. But despite the proven efficacy and safety of statin therapy, several aspects indicate a substantial need for additional or alternative LDL-C lowering therapies. These aspects include not only a high variability in individual response to therapy, but also possible side effects, potentially reducing adherence to treatment. Most importantly, an elevated risk for cardiovascular (CV) events remains in a large proportion of high-risk patients, especially in those with persistent elevation of LDL-C levels despite a maximum tolerated dose of statin therapy. Also, large clinical trials currently investigate a potential CV benefit of drug therapies targeting elevated levels of triglycerides and lipoprotein (a), respectively.
Publication History
Article published online:
19 January 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Mach F, Baigent C, Catapano AL. et al 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41: 111-188 . doi:10.1093/eurheartj/ehz455
- 2 Baigent C, Blackwell L, Emberson J. et al Efficacy and safety of more intensive lowering of LDL cholesterol: a meta-analysis of data from 170000 participants in 26 randomised trials. Lancet 2010; 376: 1670-1681 . doi:10.1016/S0140-6736(10)61350-5
- 3 Jones PH, Nair R, Thakker KM. Prevalence of dyslipidemia and lipid goal attainment in statin-treated subjects from 3 data sources: a retrospective analysis. J Am Heart Assoc 2012; 1: e001800 . doi:10.1161/JAHA.112.001800
- 4 LaRosa JC, Grundy SM, Waters DD. et al Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N Engl J Med 2005; 352: 1425-1435 . doi:10.1056/NEJMoa050461
- 5 Parker BA, Capizzi JA, Grimaldi AS. et al Effect of statins on skeletal muscle function. Circulation 2013; 127: 96-103 . doi:10.1161/CIRCULATIONAHA.112.136101
- 6 Zhang H, Plutzky J, Skentzos S. et al Discontinuation of statins in routine care settings: a cohort study. Ann Intern Med 2013; 158: 526-534 . doi:10.7326/0003-4819-158-7-201304020-00004
- 7 Sudhop T, Lutjohann D, Kodal A. et al Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 2001; 106: 1943-1948 . doi:10.1161/01.cir.0000034044.95911.dc
- 8 Cannon CP, Blazing MA, Giugliano RP. et al Ezetimibe Added to Statin Therapy after Acute Coronary Syndromes. N Engl J Med 2015; 372: 2387-2397 . doi:10.1056/NEJMoa1410489
- 9 Cannon CP, Khan I, Klimchak AC. et al Simulation of Lipid-Lowering Therapy Intensification in a Population With Atherosclerotic Cardiovascular Disease. JAMA Cardiol 2017; 2: 959-966 . doi:10.1001/jamacardio.2017.2289
- 10 Bach RG, Cannon CP, Giugliano RP. et al Effect of Simvastatin-Ezetimibe Compared With Simvastatin Monotherapy After Acute Coronary Syndrome Among Patients 75 Years or Older: A Secondary Analysis of a Randomized Clinical Trial. JAMA Cardiol 2019; 4: 846-854 . doi:10.1001/jamacardio.2019.2306
- 11 Ouchi Y, Sasaki J, Arai H. et al Ezetimibe Lipid-Lowering Trial on Prevention of Atherosclerotic Cardiovascular Disease in 75 or Older (EWTOPIA 75): A Randomized, Controlled Trial. Circulation 2019; 140: 992-1003 . doi:10.1161/CIRCULATIONAHA.118.039415
- 12 Seidah NG, Awan Z, Chretien M. et al PCSK9: a key modulator of cardiovascular health. Circ Res 2014; 114: 1022-1036 . doi:10.1161/CIRCRESAHA.114.301621
- 13 Abifadel M, Varret M, Rabes JP. et al Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat Genet 2003; 34: 154-156 . doi:10.1038/ng1161
- 14 Cohen JC, Boerwinkle E, Mosley Jr TH. et al Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 2006; 354: 1264-1272 . doi:10.1056/NEJMoa054013
- 15 Hooper AJ, Burnett JR. Anti-PCSK9 therapies for the treatment of hypercholesterolemia. Expert Opin Biol Ther 2013; 13: 429-435 . doi:10.1517/14712598.2012.748743
- 16 Koren MJ, Lundqvist P, Bolognese M. et al Anti-PCSK9 monotherapy for hypercholesterolemia: the MENDEL-2 randomized, controlled phase III clinical trial of evolocumab. J Am Coll Cardiol 2014; 63: 2531-2540 . doi:10.1016/j.jacc.2014.03.018
- 17 Robinson JG, Nedergaard BS, Rogers WJ. et al Effect of evolocumab or ezetimibe added to moderate- or high-intensity statin therapy on LDL-C lowering in patients with hypercholesterolemia: the LAPLACE-2 randomized clinical trial. JAMA 2014; 311: 1870-1882 . doi:10.1001/jama.2014.4030
- 18 Sabatine MS, Giugliano RP, Keech AC. et al Evolocumab and Clinical Outcomes in Patients with Cardiovascular Disease. N Engl J Med 2017; 376: 1713-1722 . doi:10.1056/NEJMoa1615664
- 19 Desai NR, Kohli P, Giugliano RP. et al AMG145, a monoclonal antibody against proprotein convertase subtilisin kexin type 9, significantly reduces lipoprotein(a) in hypercholesterolemic patients receiving statin therapy. Circulation 2013; 128: 962-969 . doi:10.1161/CIRCULATIONAHA.113.001969
- 20 Bohula EA, Giugliano RP, Leiter LA. et al Inflammatory and Cholesterol Risk in the FOURIER Trial. Circulation 2018; 138: 131-140 . doi:10.1161/CIRCULATIONAHA.118.034032
- 21 Schwartz GG, Steg PG, Szarek M. et al Alirocumab and Cardiovascular Outcomes after Acute Coronary Syndrome. N Engl J Med 2018; 379: 2097-2107 . doi:10.1056/NEJMoa1801174
- 22 Fitzgerald K, Frank-Kamenetsky M, Shulga-Morskaya S. et al Effect of an RNA interference drug on the synthesis of proprotein convertase subtilisin/kexin type 9 (PCSK9) and the concentration of serum LDL cholesterol in healthy volunteers. Lancet 2014; 383: 60-68 . doi:10.1016/S0140-6736(13)61914-5
- 23 Fire A, Xu S, Montgomery MK. et al Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806-811 . doi:10.1038/35888
- 24 Nair JK, Willoughby JL, Chan A. et al Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J Am Chem Soc 2014; 136: 16958-16961 . doi:10.1021/ja505986a
- 25 Bernards R. Exploring the uses of RNAi – gene knockdown and the Nobel Prize. N Engl J Med 2006; 355: 2391-2393 . doi:10.1056/NEJMp068242
- 26 Ray KK, Wright RS, Kallend D. et al Two Phase 3 Trials of Inclisiran in Patients with Elevated LDL Cholesterol. N Engl J Med 2020; 382: 1507-1519 . doi:10.1056/NEJMoa1912387
- 27 Raal FJ, Kallend D, Ray KK. et al Inclisiran for the Treatment of Heterozygous Familial Hypercholesterolemia. N Engl J Med 2020; 382: 1520-1530 . doi:10.1056/NEJMoa1913805
- 28 Pinkosky SL, Newton RS, Day EA. et al Liver-specific ATP-citrate lyase inhibition by bempedoic acid decreases LDL-C and attenuates atherosclerosis. Nat Commun 2016; 7: 13457 . doi:10.1038/ncomms13457
- 29 Burke AC, Telford DE, Huff MW. Bempedoic acid: effects on lipoprotein metabolism and atherosclerosis. Curr Opin Lipidol 2019; 30: 1-9 . doi:10.1097/MOL.0000000000000565
- 30 Ballantyne CM, Banach M, Mancini GBJ. et al Efficacy and safety of bempedoic acid added to ezetimibe in statin-intolerant patients with hypercholesterolemia: A randomized, placebo-controlled study. Atherosclerosis 2018; 277: 195-203 . doi:10.1016/j.atherosclerosis.2018.06.002
- 31 Ballantyne CM, Laufs U, Ray KK. et al Bempedoic acid plus ezetimibe fixed-dose combination in patients with hypercholesterolemia and high CVD risk treated with maximally tolerated statin therapy. Eur J Prev Cardiol 2020; 27: 593-603 . doi:10.1177/2047487319864671
- 32 Goldberg AC, Leiter LA, Stroes ESG. et al Effect of Bempedoic Acid vs Placebo Added to Maximally Tolerated Statins on Low-Density Lipoprotein Cholesterol in Patients at High Risk for Cardiovascular Disease. JAMA 2019; 322: 1780-1788 . doi:10.1001/jama.2019.16585
- 33 Laufs U, Banach M, Mancini GBJ. et al Efficacy and Safety of Bempedoic Acid in Patients With Hypercholesterolemia and Statin Intolerance. J Am Heart Assoc 2019; 8: e011662 . doi:10.1161/JAHA.118.011662
- 34 Ray KK, Bays HE, Catapano AL. et al Safety and Efficacy of Bempedoic Acid to Reduce LDL Cholesterol. N Engl J Med 2019; 380: 1022-1032 . doi:10.1056/NEJMoa1803917
- 35 Chu X, Bleasby K, Chan GH. et al Transporters affecting biochemical test results: Creatinine-drug interactions. Clin Pharmacol Ther 2016; 100: 437-440 . doi:10.1002/cpt.445
- 36 Nordestgaard BG. Triglyceride-Rich Lipoproteins and Atherosclerotic Cardiovascular Disease: New Insights From Epidemiology, Genetics, and Biology. Circ Res 2016; 118: 547-563 . doi:10.1161/CIRCRESAHA.115.306249
- 37 Rivellese AA, Maffettone A, Vessby B. et al Effects of dietary saturated, monounsaturated and n-3 fatty acids on fasting lipoproteins, LDL size and post-prandial lipid metabolism in healthy subjects. Atherosclerosis 2003; 167: 149-158 . doi:10.1016/s0021-9150(02)00424-0
- 38 Group ASC, Bowman L, Mafham M. et al Effects of n-3 Fatty Acid Supplements in Diabetes Mellitus. N Engl J Med 2018; 379: 1540-1550 . doi:10.1056/NEJMoa1804989
- 39 Abdelhamid AS, Brown TJ, Brainard JS. et al Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev 2018; 11: CD003177 . doi:10.1002/14651858.CD003177.pub4
- 40 Bhatt DL, Steg PG, Miller M. et al Cardiovascular Risk Reduction with Icosapent Ethyl for Hypertriglyceridemia. N Engl J Med 2019; 380: 11-22 . doi:10.1056/NEJMoa1812792
- 41 Clarke R, Peden JF, Hopewell JC. et al Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med 2009; 361: 2518-2528 . doi:10.1056/NEJMoa0902604
- 42 Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Extreme lipoprotein(a) levels and improved cardiovascular risk prediction. J Am Coll Cardiol 2013; 61: 1146-1156 . doi:10.1016/j.jacc.2012.12.023
- 43 Kamstrup PR, Tybjaerg-Hansen A, Nordestgaard BG. Elevated lipoprotein(a) and risk of aortic valve stenosis in the general population. J Am Coll Cardiol 2014; 63: 470-477 . doi:10.1016/j.jacc.2013.09.038
- 44 Thanassoulis G, Campbell CY, Owens DS. et al Genetic associations with valvular calcification and aortic stenosis. N Engl J Med 2013; 368: 503-512 . doi:10.1056/NEJMoa1109034
- 45 Albers JJ, Slee A, O'Brien KD. et al Relationship of apolipoproteins A-1 and B, and lipoprotein(a) to cardiovascular outcomes: the AIM-HIGH trial. J Am Coll Cardiol 2013; 62: 1575-1579 . doi:10.1016/j.jacc.2013.06.051
- 46 Ray KK, Vallejo-Vaz AJ, Ginsberg HN. et al Lipoprotein(a) reductions from PCSK9 inhibition and major adverse cardiovascular events: Pooled analysis of alirocumab phase 3 trials. Atherosclerosis 2019; 288: 194-202 . doi:10.1016/j.atherosclerosis.2019.06.896
- 47 Waldmann E, Parhofer KG. Apheresis for severe hypercholesterolaemia and elevated lipoprotein(a). Pathology 2019; 51: 227-232 . doi:10.1016/j.pathol.2018.10.016
- 48 Tsimikas S, Viney NJ, Hughes SG. et al Antisense therapy targeting apolipoprotein(a): a randomised, double-blind, placebo-controlled phase 1 study. Lancet 2015; 386: 1472-1483 . doi:10.1016/S0140-6736(15)61252-1
- 49 Crooke ST, Witztum JL, Bennett CF. et al RNA-Targeted Therapeutics. Cell Metab 2018; 27: 714-739 . doi:10.1016/j.cmet.2018.03.004
- 50 Tsimikas S, Karwatowska-Prokopczuk E, Gouni-Berthold I. et al Lipoprotein(a) Reduction in Persons with Cardiovascular Disease. N Engl J Med 2020; 382: 244-255 . doi:10.1056/NEJMoa1905239