Subscribe to RSS
DOI: 10.1055/a-1202-9010
Säure-Basen-Störungen
Die Blutgasanalyse liefert zeitnah adäquate Informationen bezüglich Oxygenierung, Ventilation und metabolischer Situation inkl. Elektrolyten. Die ausgezeichnete Korrelation zur Klinik ermöglicht somit auch eine rasche Optimierung der Versorgung. Der Fokus dieses Artikels liegt auf einer pragmatischen Hilfestellung der klinischen Interpretation von Blutgasanalysen als effektiv nutzbares Diagnostikum.
-
Säure-Basen-Störungen sind im intensivmedizinischen Kontext häufig komplex und bedürfen einer differenzierteren Betrachtung.
-
Die Wasserstoffionenkonzentration bzw. der pH-Wert werden durch das Verhältnis von CO₂ zu HCO₃− bestimmt, nicht vom absoluten Wert.
-
Die klinische Manifestation von Säure-Basen-Störungen wird im Wesentlichen von der Dynamik der Entstehung und den einhergehenden Ursachen geprägt als vom Zahlenwert des pH-Wertes per se.
-
Schnell zu bestimmende Parameter wie die Anionenlücke und das Delta-Gap geben Hilfestellungen bei differenzialtherapeutischen Entscheidungen.
-
Bei metabolischen Störungen sollte immer die Anionenlücke bestimmt werden.
-
Die Therapie von Säure-Basen-Störungen sollte sich auf die Ursache fokussieren.
-
Akute respiratorische Störungen wirken sich aufgrund der erst verzögert einsetzenden renalen Kompensation deutlicher auf den pH-Wert aus als chronische.
-
Bei der Entwöhnung von der Beatmung sollte bei chronisch respiratorischen Störungen die initiale HCO₃−-Konzentration beachtet werden.
-
Elektrolytveränderungen (Na, K, Cl, ionisiertes Ca) sind eng mit Säure-Basen-Störungen assoziiert und sowohl diagnostisch als auch therapeutisch in den Behandlungsprozess und das Monitoring zu integrieren.
Schlüsselwörter
Intensivmedizin - metabolische Störungen - Azidose - Alkalose - respiratorische Störungen - ElektrolytstörungenPublication History
Article published online:
19 February 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Halperin ML. Fluid, Electrolyte, and Acid-base Physiology – a problem-based Approach. Philadelphia: Saunders/Elsevier; 2010
- 2 Kettritz RLFC. Störungen des Säure-Basen-Haushaltes. In: Kuhlmann U, Luft FC, Böhler J, Alscher MD, Kunzendorf U. Hrsg. Nephrologie. Pathophysiologie, Klinik, Nierenersatzverfahren. Stuttgart: Thieme; 2015: 277-320
- 3 Hochrainer M, Funk G-C. Interpretation von Säure-Basen-Störungen. Medizinische Klinik – Intensivmedizin und Notfallmedizin 2019; 114: 765-776 doi:10.1007/s00063-019-00621-x
- 4 Schricker S, Schanz M, Alscher MD. et al. Metabolische Azidose. Med Klin Intensivmed Notfmed 2020; 115: 275-280 doi:10.1007/s00063-019-0538-y
- 5 Hafer C. Pufferung durch Dialyseverfahren – Hintergründe und Auswirkungen auf den Patienten. Dialyse aktuell 2016; 20: 190-195 doi:10.1055/s-0042-106516
- 6 Hafer C. Säure-Basen-Störungen. Intensivmedizin up2date 2016; 12: 111-134 doi:10.1055/s-0041-110071
- 7 Seifter JL. Integration of acid-base and electrolyte disorders. N Engl J Med 2014; 371: 1821-1831 doi:10.1056/NEJMra1215672
- 8 Kimura S, Shabsigh M, Morimatsu H. Traditional approach versus Stewart approach for acid-base disorders: Inconsistent evidence. SAGE Open Med 2018; 6: 2050312118801255 doi:10.1177/2050312118801255
- 9 Masevicius FD, Dubin A. Has Stewart approach improved our ability to diagnose acid-base disorders in critically ill patients?. World J Crit Care Med 2015; 4: 62-70 doi:10.5492/wjccm.v4.i1.62
- 10 Berend K, de Vries APJ, Gans ROB. Physiological Approach to Assessment of Acid-Base Disturbances. N Engl J Med 2014; 371: 1434-1445 doi:10.1056/NEJMra1003327
- 11 Kellum JA, Elbers PWG. Stewartʼs Textbook of Acid-Base. Amsterdam: Acidbase; 2009
- 12 Bakker J, Vincent JL, Gris P. et al. Veno-arterial carbon dioxide gradient in human septic shock. Chest 1992; 101: 509-515 doi:10.1378/chest.101.2.509
- 13 Treger R, Pirouz S, Kamangar N. et al. Agreement between central venous and arterial blood gas measurements in the intensive care unit. Clin J Am Soc Nephrol 2010; 5: 390-394 doi:10.2215/CJN.00330109
- 14 Zhou J, Song J, Gong S. et al. Persistent hyperlactatemia-high central venous-arterial carbon dioxide to arterial-venous oxygen content ratio is associated with poor outcomes in early resuscitation of septic shock. Am J Emerg Med 2017; 35: 1136-1141 doi:10.1016/j.ajem.2017.03.027
- 15 Adrogue HJ, Madias NE. Changes in plasma potassium concentration during acute acid-base disturbances. Am J Med 1981; 71: 456-467
- 16 Grocott MP, Martin DS, Levett DZ. et al. Arterial blood gases and oxygen content in climbers on Mount Everest. N Engl J Med 2009; 360: 140-149 doi:10.1056/NEJMoa0801581
- 17 Zahler R, Barrett E, Majumdar S. et al. Lactic acidosis: effect of treatment on intracellular pH and energetics in living rat heart. Am J Physiol 1992; 262: H1572-H1578 doi:10.1152/ajpheart.1992.262.5.H1572
- 18 Rehring TF, Shapiro JI, Cain BS. et al. Mechanisms of pH preservation during global ischemia in preconditioned rat heart: roles for PKC and NHE. Am J Physiol 1998; 275: H805-H813 doi:10.1152/ajpheart.1998.275.3.H805
- 19 Vichot AA, Rastegar A. Use of anion gap in the evaluation of a patient with metabolic acidosis. Am J Kidney Dis 2014; 64: 653-657 doi:10.1053/j.ajkd.2014.05.022
- 20 Lipnick MS, Braun AB, Cheung JT. et al. The difference between critical care initiation anion gap and prehospital admission anion gap is predictive of mortality in critical illness. Crit Care Med 2013; 41: 49-59 doi:10.1097/CCM.0b013e31826764cd
- 21 Rastegar A. Use of the DeltaAG/DeltaHCO₃− ratio in the diagnosis of mixed acid-base disorders. J Am Soc Nephrol 2007; 18: 2429-2431 doi:10.1681/ASN.2006121408
- 22 Goodkin DA, Krishna GG, Narins RG. The role of the anion gap in detecting and managing mixed metabolic acid-base disorders. Clin Endocrinol Metab 1984; 13: 333-349 doi:10.1016/s0300-595x(84)80025-0
- 23 Batlle D, Chin-Theodorou J, Tucker BM. Metabolic acidosis or respiratory alkalosis? Evaluation of a low plasma bicarbonate using the urine anion gap. Am J Kidney Dis 2017; 70: 440-444 doi:10.1053/j.ajkd.2017.04.017
- 24 Sterns RH. Managing electrolyte disorders: order a basic urine metabolic panel. Nephrol Dialys Transplant 2020;
- 25 Stacpoole PW, Wright EC, Baumgartner TG. et al. Natural history and course of acquired lactic acidosis in adults. DCA-Lactic Acidosis Study Group. Am J Med 1994; 97: 47-54 doi:10.1016/0002-9343(94)90047-7
- 26 Wagner A, Risse A, Brill HL. et al. Therapy of severe diabetic ketoacidosis. Zero-mortality under very-low-dose insulin application. Diabetes Care 1999; 22: 674-677 doi:10.2337/diacare.22.5.674
- 27 Gunnerson KJ, Saul M, He S. et al. Lactate versus non-lactate metabolic acidosis: a retrospective outcome evaluation of critically ill patients. Crit Care 2006; 10: R22 doi:10.1186/cc3987
- 28 Nichol AD, Egi M, Pettila V. et al. Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care 2010; 14: R25 doi:10.1186/cc8888
- 29 Didwania A, Miller J, Kassel D. et al. Effect of intravenous lactated Ringerʼs solution infusion on the circulating lactate concentration: Part 3. Results of a prospective, randomized, double-blind, placebo-controlled trial. Crit Care Med 1997; 25: 1851-1854 doi:10.1097/00003246-199711000-00024
- 30 Holmberg MJ, Moskowitz A, Patel PV. et al. Thiamine in septic shock patients with alcohol use disorders: An observational pilot study. J Crit Care 2018; 43: 61-64 doi:10.1016/j.jcrc.2017.08.022
- 31 Husain FA, Martin MJ, Mullenix PS. et al. Serum lactate and base deficit as predictors of mortality and morbidity. Am J Surg 2003; 185: 485-491 doi:10.1016/s0002-9610(03)00044-8
- 32 Derer W, Elitok S, Claus T. et al. Lactate in a laubenpieper. Nephrol Dial Transplant 2005; 20: 2851-2854 doi:10.1093/ndt/gfi057
- 33 Woolum JA, Abner EL, Kelly A. et al. Effect of thiamine administration on lactate clearance and mortality in patients with septic shock. Crit Care Med 2018; 46: 1747-1752 doi:10.1097/CCM.0000000000003311
- 34 Hafer C, Kielstein J. Akute Nierenschädigung. Intensivmedizin up2date 2015; 11: 229-244 doi:10.1055/s-0034-1392638
- 35 Friedenberg AS, Brandoff DE, Schiffman FJ. Type B lactic acidosis as a severe metabolic complication in lymphoma and leukemia: a case series from a single institution and literature review. Medicine 2007; 86: 225-232 doi:10.1097/MD.0b013e318125759a
- 36 Myburgh JA, Mythen MG. Resuscitation fluids. N Engl J Med 2013; 369: 1243-1251 doi:10.1056/NEJMra1208627
- 37 Gennari FJ. Intravenous fluid therapy: saline versus mixed electrolyte and organic anion solutions. Am J Kidney Dis 2013; 62: 20-22 doi:10.1053/j.ajkd.2013.01.009
- 38 Doenyas-Barak K, Beberashvili I, Marcus R. et al. Lactic acidosis and severe septic shock in metformin users: a cohort study. Crit Care 2016; 20: 10 doi:10.1186/s13054-015-1180-6
- 39 Posma RA, Absalom AR, Touw DJ. et al. Metformin and lactic acidosis during shock: just the tip of the iceberg?. Crit Care 2016; 20: 158 doi:10.1186/s13054-016-1333-2
- 40 Friesecke S, Abel P, Roser M. et al. Outcome of severe lactic acidosis associated with metformin accumulation. Crit Care 2010; 14: R226 doi:10.1186/cc9376
- 41 Greco P, Regolisti G, Maggiore U. et al. Sustained low-efficiency dialysis for metformin-associated lactic acidosis in patients with acute kidney injury. J Nephrol 2019; 32: 297-306 doi:10.1007/s40620-018-00562-2
- 42 Regolisti G, Antoniotti R, Fani F. et al. Treatment of metformin intoxication complicated by lactic acidosis and acute kidney injury: the role of prolonged intermittent hemodialysis. Am J Kidney Dis 2017; 70: 290-296 doi:10.1053/j.ajkd.2016.12.010
- 43 Yeh HC, Ting IW, Tsai CW. et al. Serum lactate level and mortality in metformin-associated lactic acidosis requiring renal replacement therapy: a systematic review of case reports and case series. BMC Nephrol 2017; 18: 229 doi:10.1186/s12882-017-0640-4
- 44 Smith FC, Kumar SS, Furlong TJ. et al. Pharmacokinetics of metformin in patients receiving regular hemodiafiltration. Am J Kidney Dis 2016; 68: 990-992 doi:10.1053/j.ajkd.2016.08.017
- 45 Glaser N, Barnett P, McCaslin I. et al. Risk factors for cerebral edema in children with diabetic ketoacidosis. The Pediatric Emergency Medicine Collaborative Research Committee of the American Academy of Pediatrics. N Engl J Med 2001; 344: 264-269 doi:10.1056/nejm200101253440404
- 46 Savage MW, Dhatariya KK, Kilvert A. et al. Joint British Diabetes Societies guideline for the management of diabetic ketoacidosis. Diabet Med 2011; 28: 508-515 doi:10.1111/j.1464-5491.2011.03246.x
- 47 Kitabchi AE, Umpierrez GE, Miles JM. et al. Hyperglycemic crises in adult patients with diabetes. Diabetes Care 2009; 32: 1335-1343 doi:10.2337/dc09-9032
- 48 Rosenstock J, Ferrannini E. Euglycemic Diabetic Ketoacidosis: A Predictable, Detectable, and Preventable Safety Concern With SGLT2 Inhibitors. Diabetes Care 2015; 38: 1638-1642 doi:10.2337/dc15-1380
- 49 Ogawa W, Sakaguchi K. Euglycemic diabetic ketoacidosis induced by SGLT2 inhibitors: possible mechanism and contributing factors. J Diabetes Investig 2016; 7: 135-138 doi:10.1111/jdi.12401
- 50 Breuer TGK, Kampmann K, Wutzler A. et al. Schwere atypische Ketoazidose durch SGLT2-Inhibitor-Therapie. Internist 2018; 59: 282-287 doi:10.1007/s00108-017-0316-y
- 51 Burke KR, Schumacher CA, Harpe SE. SGLT2 Inhibitors: A Systematic review of diabetic ketoacidosis and related risk factors in the primary literature. Pharmacotherapy 2017; 37: 187-194 doi:10.1002/phar.1881
- 52 Roberts RJ, Barletta JF, Fong JJ. et al. Incidence of propofol-related infusion syndrome in critically ill adults: a prospective, multicenter study. Crit Care 2009; 13: R169 doi:10.1186/cc8145
- 53 Diedrich DA, Brown DR. Analytic reviews: propofol infusion syndrome in the ICU. J Intensive Care Med 2011; 26: 59-72 doi:10.1177/0885066610384195
- 54 Krajcova A, Waldauf P, Andel M. et al. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care 2015; 19: 398 doi:10.1186/s13054-015-1112-5
- 55 Kielstein JT, Hafer C. Rhabdomyolyse. In: Marx G, Zacharowski K, Kluge S. Hrsg. Referenz Intensivmedizin. Stuttgart: Thieme;; 2020: 62-68
- 56 Thongprayoon C, Petnak T, Kaewput W. et al. Hospitalizations for Acute Salicylate Intoxication in the United States. J Clin Med 2020; 9: 2638 doi:10.3390/jcm9082638
- 57 Fertel BS, Nelson LS, Goldfarb DS. The underutilization of hemodialysis in patients with salicylate poisoning. Kidney Int 2009; 75: 1349-1353 doi:10.1038/ki.2008.443
- 58 Juurlink DN, Gosselin S, Kielstein JT. et al. Extracorporeal Treatment for salicylate poisoning: systematic review and recommendations from the EXTRIP Workgroup. Ann Emerg Med 2015; 66: 165-181 doi:10.1016/j.annemergmed.2015.03.031
- 59 Drick N, Schmidt JJ, Wiesner O. et al. Fomepizol, Ethanol oder Dialyse bei lebensbedrohlicher Ethylenglykolvergiftung?. Med Klin Intensivmed Notfallmed 2020;
- 60 Kraut JA, Mullins ME. Toxic alcohols. N Engl J Med 2018; 378: 270-280 doi:10.1056/NEJMra1615295
- 61 Kraut JA, Kurtz I. Toxic alcohol ingestions: clinical features, diagnosis, and management. Clin J Am Soc Nephrol 2008; 3: 208-225 doi:10.2215/cjn.03220807
- 62 Kraut JA, Kurtz I. Use of base in the treatment of acute severe organic acidosis by nephrologists and critical care physicians: results of an online survey. Clin Exp Nephrol 2006; 10: 111-117 doi:10.1007/s10157-006-0408-9
- 63 Kim HJ, Son YK, An WS. Effect of sodium bicarbonate administration on mortality in patients with lactic acidosis: a retrospective analysis. PLoS One 2013; 8: e65283 doi:10.1371/journal.pone.0065283
- 64 Cooper DJ, Walley KR, Wiggs BR. et al. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. A prospective, controlled clinical study. Ann Intern Med 1990; 112: 492-498 doi:10.7326/0003-4819-112-7-492
- 65 Kraut JA, Madias NE. Treatment of acute metabolic acidosis: a pathophysiologic approach. Nat Rev Nephrol 2012; 8: 589-601 doi:10.1038/nrneph.2012.186
- 66 El-Solh AA, Abou Jaoude P, Porhomayon J. Bicarbonate therapy in the treatment of septic shock: a second look. Intern Emerg Med 2010; 5: 341-347 doi:10.1007/s11739-010-0351-3
- 67 Jung B, Rimmele T, Le Goff C. et al. Severe metabolic or mixed acidemia on intensive care unit admission: incidence, prognosis and administration of buffer therapy. A prospective, multiple-center study. Crit Care 2011; 15: R238 doi:10.1186/cc10487
- 68 Huseby JS, Gumprecht DG. Hemodynamic effects of rapid bolus hypertonic sodium bicarbonate. Chest 1981; 79: 552-554 doi:10.1378/chest.79.5.552
- 69 Mathieu D, Neviere R, Billard V. et al. Effects of bicarbonate therapy on hemodynamics and tissue oxygenation in patients with lactic acidosis: a prospective, controlled clinical study. Crit Care Med 1991; 19: 1352-1356 doi:10.1097/00003246-199111000-00008
- 70 Boyd JH, Walley KR. Is there a role for sodium bicarbonate in treating lactic acidosis from shock?. Curr Opin Crit Care 2008; 14: 379-383 doi:10.1097/MCC.0b013e3283069d5c
- 71 Zhang Z, Zhu C, Mo L. et al. Effectiveness of sodium bicarbonate infusion on mortality in septic patients with metabolic acidosis. Intensive Care Med 2018; 44: 1888-1895 doi:10.1007/s00134-018-5379-2
- 72 Jaber S, Paugam C, Futier E. et al. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised controlled, phase 3 trial. Lancet 2018; 392: 31-40 doi:10.1016/S0140-6736(18)31080-8
- 73 Hafer C, Kielstein JT. Therapie akuter Intoxikationen. Intensivmedizin up2date 2014; 10: 201-215
- 74 Kamel KS, Halperin ML. Acid-base problems in diabetic ketoacidosis. N Engl J Med 2015; 372: 546-554 doi:10.1056/NEJMra1207788
- 75 Bianchi NA, Altarelli M, Eckert P. et al. Complications of regional citrate anticoagulation for continuous renal replacement therapy: an observational study. Blood Purif 2020; 49: 567-575 doi:10.1159/000506253
- 76 Kraut JA, Kurtz I. Treatment of acute non-anion gap metabolic acidosis. Clin Kidney J 2015; 8: 93-99
- 77 Maehle K, Haug B, Flaatten H. et al. Metabolic alkalosis is the most common acid-base disorder in ICU patients. Crit Care 2014; 18: 420 doi:10.1186/cc13802
- 78 Cooper LB, Mentz RJ, Gallup D. et al. Serum bicarbonate in acute heart failure: relationship to treatment strategies and clinical outcomes. J Card Fail 2016; 22: 738-742 doi:10.1016/j.cardfail.2016.01.007
- 79 Cuthbert JJ, Bhandari S, Clark AL. Hypochloraemia in patients with heart failure: causes and consequences. Cardiol Ther 2020;
- 80 Emmett M. Metabolic Alkalosis: A Brief Pathophysiologic Review. Clin J Am Soc Nephrol 2020;
- 81 Kindgen-Milles D, Amman J, Kleinekofort W. et al. Treatment of metabolic alkalosis during continuous renal replacement therapy with regional citrate anticoagulation. Int J Artificial Organs 2008; 31: 363-366 doi:10.1177/039139880803100414
- 82 Kettritz R. Gastrointestinale Ursachen von metabolischer Alkalose. Metabolic alkalosis in patients with gastrointestinal fluid loss. Nephrologe 2012; 7: 481-489
- 83 Menitove SM, Goldring RM. Combined ventilator and bicarbonate strategy in the management of status asthmaticus. Am J Med 1983; 74: 898-901 doi:10.1016/0002-9343(83)91082-3
- 84 Buysse CM, de Jongste JC, de Hoog M. Life-threatening asthma in children: treatment with sodium bicarbonate reduces PCO₂. Chest 2005; 127: 866-870 doi:10.1378/chest.127.3.866
- 85 Hodgkin JE, Soeprono FF, Chan DM. Incidence of metabolic alkalemia in hospitalized patients. Crit Care Med 1980; 8: 725-728 doi:10.1097/00003246-198012000-00005
- 86 Tanios BY, Omran MO, Noujeim C. et al. Carbonic anhydrase inhibitors in patients with respiratory failure and metabolic alkalosis: a systematic review and meta-analysis of randomized controlled trials. Crit Care 2018; 22: 275 doi:10.1186/s13054-018-2207-6
- 87 Faisy C, Mokline A, Sanchez O. et al. Effectiveness of acetazolamide for reversal of metabolic alkalosis in weaning COPD patients from mechanical ventilation. Intensive Care Med 2010; 36: 859-863 doi:10.1007/s00134-010-1795-7
- 88 Gulsvik R, Skjorten I, Undhjem K. et al. Acetazolamide improves oxygenation in patients with respiratory failure and metabolic alkalosis. Clin Respirat J 2013; 7: 390-396 doi:10.1111/crj.12025
- 89 Heming N, Faisy C, Urien S. Population pharmacodynamic model of bicarbonate response to acetazolamide in mechanically ventilated chronic obstructive pulmonary disease patients. Crit Care 2011; 15: R213 doi:10.1186/cc10448
- 90 Brijker F, Heijdra YF, van den Elshout FJ. et al. Discontinuation of furosemide decreases PaCO(2) in patients with COPD. Chest 2002; 121: 377-382 doi:10.1378/chest.121.2.377
- 91 Anderson LE, Henrich WL. Alkalemia-associated morbidity and mortality in medical and surgical patients. South Med J 1987; 80: 729-733
- 92 Palmer BF. Evaluation and treatment of respiratory alkalosis. Am J Kidney Dis 2012; 60: 834-838 doi:10.1053/j.ajkd.2012.03.025
- 93 Mountain RD, Heffner JE, Brackett NC. et al. Acid-base disturbances in acute asthma. Chest 1990; 98: 651-655 doi:10.1378/chest.98.3.651
- 94 Lewis L, Ferguson I, House SL. et al. Albuterol administration is commonly associated with increases in serum lactate in patients with asthma treated for acute exacerbation of asthma. Chest 2014; 145: 53-59 doi:10.1378/chest.13-0930