Subscribe to RSS
DOI: 10.1055/a-1206-6769
Arthrose – Ursachen und Therapie 2021
Osteoarthritis – Causes and Therapy 2021Zusammenfassung
Die Arthrose ist eine chronische Erkrankung, die Gelenke wie Schulter, Hand, Hüfte, Knie und Füße betrifft und erhebliche Schmerzen, zunehmende Behinderung und fortschreitende Knorpeldegeneration verursacht. Die Arthrose tritt häufig bei Erwachsenen im Alter von über 50 Jahren auf und ist weltweit eine der Hauptursachen für Behinderungen. Die degenerativen Veränderungen und chronischen kumulativen Schädigungen der Gelenke umfassen Knorpeldenaturierung und -zerstörung, Sklerose und Zystenbildung des subchondralen Knochens, Osteophytenbildung, Synovialisläsionen sowie Veränderungen der umliegenden Strukturen.
Die Inzidenz der Arthrose steigt aufgrund der alternden Bevölkerung und der Zunahme von Adipositas. Aber auch Gelenkfehlstellungen, Verletzungen, Knochenmasse, Muskelmasse und die Genetik sind als Ursachen mittlerweile anerkannt. Die Arthrose hat eine komplexe Pathophysiologie, die bisher nur unvollständig verstanden ist.
Zurzeit gibt es viele aktuelle Leitlinien und Konsens zur Diagnose und Behandlung der Arthrose sowohl im In- als auch im Ausland.
Da es bisher keine etablierte krankheitsmodifizierende Therapie oder Ansätze der Verhinderung der Arthrose gibt, basieren die Behandlung auf einer Kombination von pharmakologischen und nicht-pharmakologischen Therapien, die die Symptome der Arthrose, vor allem Schmerzen und Funktionsverlust, behandeln können, d.h. Analgetika, nicht-steroidale Antirheumatika und physikalische Therapie.
Neben den konventionellen medizinischen und chirurgischen Interventionen gibt es eine zunehmende Anzahl von ‚alternativen‘ Therapien. Diese alternativen Ansätze haben nur eine begrenzte Evidenz und werden aus diesem Grund in aktuellen Leitlinien oft ausgeschlossen. Trotzdem werden gerade diese von vielen Patienten als Nahrungsergänzung eingenommen.
Abstract
Osteoarthritis is a chronic disease that affects joints such as the shoulder, hand, hip, knee and feet, causing significant pain, increasing disability and progressive cartilage degeneration. Osteoarthritis is common in adults over the age of 50 and is a leading cause of disability worldwide.
The degenerative changes and chronic cumulative damage to the joints, include cartilage denaturation and destruction, sclerosis and cyst formation of the subchondral bone, osteophyte formation, synovial lesions and changes in surrounding structures.
The incidence of osteoarthritis is increasing due to the ageing population and the increase in obesity. However, joint deformities, injuries, bone mass, muscle mass and genetics are now also recognized as causes. Osteoarthritis has a complex pathophysiology that is incompletely understood.
Currently, there are many current guidelines and consensus on the diagnosis and treatment of osteoarthritis both domestically and internationally.
As there is as yet no established disease-modifying therapy or approaches to the prevention of osteoarthritis, current treatment before surgery is based on a combination of pharmacological and non-pharmacological therapies that can treat the symptoms of osteoarthritis, primarily pain and loss of function, i.e. analgesics, non-steroidal anti-inflammatory drugs and physical therapy.
In addition to conventional medical and surgical interventions, there are an increasing number of ‘alternative’ therapies. These alternative approaches have limited evidence and are therefore often excluded from current guidelines. Nevertheless, many patients take them as dietary supplements.
Schlüsselwörter
Arthrose - Epidemiologie - Ursachen - subchondraler Knochen - pharmakologische Therapie - nicht-pharmakologische Therapie - alternative TherapienKey words
Osteoarthritis - epidemiology - causes - subchondral bone - pharmacological -therapy - non-pharmacological therapy - alternative therapiesPublication History
Article published online:
09 February 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Bijlsma JW, Berenbaum F, Lafeber FP. Osteoarthritis: An update with relevance for clinical practice. Lancet 2011; 377: 2115-2126
- 2 McDonough CM, Jette AM. The contribution of osteoarthritis to functional limitations and disability. Clin Geriatr Med Aug. 2010; 26: 387-399 . [PMC free article]
- 3 Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 2014; 28: 5-15
- 4 Neogi T, Zhang Y. Epidemiology of osteoarthritis. Rheum Dis Clin North Am 2013; 39: 1-19
- 5 Kim C, Linsenmeyer KD, Vlad SC. et al. Prevalence of radiographic and symptomatic hip osteoarthritis in an urban United States community: The Framingham osteoarthritis study. Arthritis Rheumatol 2014; 66: 3013-3017
- 6 Turkiewicz A, Gerhardsson de Verdier M, Engstrom G. et al. Prevalence of knee pain and knee OA in southern Sweden and the proportion that seeks medical care. Rheumatology 2015; 54: 827-835
- 7 Kalichman L, Hernandez-Molina G. Midfoot and forefoot osteoarthritis. Foot 2014; 24: 128-134
- 8 Thomas E, Peat G, Croft P. Defining and mapping the person with osteoarthritis for population studies and public health. Rheumatology (Oxford) 2014; 53: 338-345
- 9 Johnson VL, Hunter DJ. The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 2014; 28: 5-15
- 10 Cleveland RJ, Schwartz TA, Prizer LP. et al. Associations of educational attainment, occupation and community poverty with hip osteoarthritis. Arthritis Care Res 2013; 65: 954-961
- 11 Callahan LF, Cleveland RJ, Shreffler J. et al. Associations of educational attainment, occupation and community poverty with knee osteoarthritis in the Johnston County (North Carolina) osteoarthritis project. Arthritis Res Therapy 2011; 13: R169
- 12 Jordan JM, Helmick CG, Renner JB. et al. Prevalence of knee symptoms and radiographic and symptomatic knee osteoarthritis in African Americans and Caucasians: The Johnston County Osteoarthritis Project. J Rheumatol 2007; 31: 172-180
- 13 Pan F, Ding C, Winzenberg T. et al. The offspring of people with a total knee replacement for severe primary knee osteoarthritis have a higher risk of worsening knee pain over 8 years. Ann Rheum Dis 2014
- 14 Khan HI, Aitken D, Chou L. et al. A family history of knee joint replacement increases the progression of knee radiographic osteoarthritis and medial tibial cartilage volume loss over 10 years. Osteoarthritis Cartilage 2014; 23: 203-209
- 15 Blagojevic M, Jinks C, Jeffery A. et al. Risk factors for onset of osteoarthritis of the knee in older adults: A systematic review and meta-analysis. Osteoarthritis Cartilage 2010; 18: 24-33
- 16 Leung YY, Allen Jr JC, Noviani M. et al. Association between body mass index and risk of total knee replacement, the Singapore Chinese Health Study. Osteoarthritis Cartilage 2015; 23: 41-47
- 17 Visser AW, de Mutsert R, Loef M. et al. The role of fat mass and skeletal muscle mass in knee osteoarthritis is different for men and women: The NEO study. Osteoarthritis Cartilage 2014; 22: 197-202
- 18 Karvonen-Gutierrez CA, Harlow SD, Jacobson J. et al. The relationship between longitudinal serum leptin measures and measures of magnetic resonance imaging-assessed knee joint damage in a population of mid-life women. Ann Rheum Dis 2014; 73: 883-889
- 19 Fowler-Brown A, Kim DH, Shi L. et al. The mediating effect of leptin on the relationship between body weight and knee osteoarthritis in older adults. Arthritis Rheumatol 2015; 67: 169-175
- 20 Lim YZ, Wang Y, Wluka AE. et al. Association of obesity and systemic factors with bone marrow lesions at the knee: A systematic review. Semin Arthritis Rheum 2014; 43: 600-612
- 21 Valdes AM, Zhang W, Muir K. et al. Use of statins is associated with lower prevalence of generalised osteoarthritis. Ann Rheum Dis 2014; 73: 943-945
- 22 Teichtahl AJ, Wluka AE, Tanamas SK. et al. Weight change and change in tibial cartilage volume and symptoms in obese adults. Ann Rheum Dis 2015; 74: 1024-1029
- 23 Magnusson K, Osteras N, Haugen IK. et al. No strong relationship between body mass index and clinical hand osteoarthritis: Results from a population-based case-control study. Scandinavian J Rheumatol 2014; 43: 409-415
- 24 Lu B, Driban JB, Duryea J. et al. Milk consumption and progression of medial tibiofemoral knee osteoarthritis: Data from the Osteoarthritis Initiative. Arthritis Care Res 2014; 66: 802-809
- 25 Shea MK, Kritchevsky SB, Hsu F. et al. The association between vitamin K status and knee osteoarthritis features in older adults: The Health, Aging and Body Composition Study. Osteoarthritis Cartilage 2014; 23: 370-378
- 26 Chaganti RK, Tolstykh I, Javaid MK. et al. High plasma levels of vitamin C and E are associated with incident radiographic knee osteoarthritis. Osteoarthritis Cartilage 2014; 22: 190-196
- 27 Hardcastle SA, Dieppe P, Gregson CL. et al. Prevalence of radiographic hip osteoarthritis is increased in high bone mass. Osteoarthritis Cartilage 2014; 22: 1120-1128
- 28 Hardcastle SA, Dieppe P, Gregson CL. et al. Individuals with high bone mass have an increased prevalence of radiographic knee osteoarthritis. Bone 2015; 71: 171-179
- 29 Nelson AE, Liu F, Lynch JA. et al. Association of incident symptomatic hip osteoarthritis with differences in hip shape by active shape modeling: The Johnston County Osteoarthritis Project. Arthritis Care Res 2014; 66: 74-81
- 30 Wise BL, Kritikos L, Lynch JA. et al. Proximal femur shape differs between subjects with lateral and medial knee osteoarthritis and controls: The Osteoarthritis Initiative. Osteoarthritis Cartilage 2014; 22: 2067-2073
- 31 Boissonneault A, Lynch JA, Wise BL. et al. Association of hip and pelvic geometry with tibiofemoral osteoarthritis: Multicenter Osteoarthritis Study (MOST). Osteoarthritis Cartilage 2014; 22: 1129-1135
- 32 Thomas GE, Palmer AJ, Batra RN. et al. Subclinical deformities of the hip are significant predictors of radiographic osteoarthritis and joint replacement in women. A 20 year longitudinal cohort study. Osteoarthritis Cartilage 2014; 22: 1504-1510
- 33 Hall M, Wrigley TV, Metcalf BR. et al. Do moments and strength predict cartilage changes following partial meniscectomy?. Med Sci Sports Exerc 2014; 47: 1549-1556
- 34 Runhaar J, van Middelkoop M, Reijman M. et al. Malalignment: A possible target for prevention of incident knee osteoarthritis in overweight and obese women. Rheumatology (Oxford). 2014; 53: 1618-1624 .
- 35 Sharma L, Song J, Dunlop D. et al. Varus and valgus alignment and incident and progressive knee osteoarthritis. Ann Rheum Dis 2010; 69: 1940-1945
- 36 Tanamas S, Hanna FS, Cicuttini FM. et al. Does knee malalignment increase the risk of development and progression of knee osteoarthritis? A systematic review. Arthritis Rheum 2009; 61: 459-467
- 37 Henriksen M, Creaby MW, Lund H. et al. Is there a causal link between knee loading and knee osteoarthritis progression? A systematic review and meta-analysis of cohort studies and randomised trials. BMJ Open 2014; 4: e005368
- 38 Menz HB, Roddy E, Marshall M. et al. Demographic and clinical factors associated with radiographic severity of first metatarsophalangeal joint osteoarthritis: Cross-sectional findings from the Clinical Assessment Study of the Foot. Osteoarthritis Cartilage 2015; 23: 77-82
- 39 Golightly YM, Hannan MT, Dufour AB. et al. Factors associated with hallux valgus in a community-based cross-sectional study of adults with and without osteoarthritis. Arthritis Care Res 2014; 35: 1159-1165
- 40 Seitz AM, Osthaus F, Ignatius A. et al. Degeneration alters first the biomechanical properties of human menisci before affecting the tibial cartilage. ORS 2020; Annual Meeting Paper No 0687 Posterbook page 28.
- 41 Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci 2010; 1192: 230-237
- 42 Li G, Yin J, Gao J. et al. Subchondral bone in osteoarthritis: Insight into risk factors and microstructural changes. Arthritis Res Ther 2013; 15: 223
- 43 Funck-Brentano T, Cohen-Solal M. Subchondral bone and osteoarthritis. Curr Opin Rheumatol 2015; 27: 420-426
- 44 Sanchez C, Pesesse L, Gabay O. et al. Regulation of subchondral bone osteoblast metabolism by cyclic compression. Arthritis Rheum 2012; 64: 1193-1203
- 45 Burr DB, Gallant MA. Bone remodelling in osteoarthritis. Nat Rev Rheumatol 2012; 8: 665-673 . doi:10.1038/nrrheum.2012.130
- 46 Goldring SR. Role of Bone in Osteoarthritis Pathogenesis. Med Clin N Am 2009; 93: 25-35
- 47 Driban JB, Tassinari A, Lo GH. et al. Bone marrow lesions are associated with altered trabecular morphometry. Osteoarthr Cartil 2012; 20: 1519-1526
- 48 Bowes MA, McLure SW, Wolstenholme CB. et al. Osteoarthritic bone marrow lesions almost exclusively colocate with denuded cartilage: A 3D study using data from the Osteoarthritis Initiative. Ann Rheum Dis 2016; 75: 1852-1857
- 49 Ruhdorfer A, Wirth W, Hitzl W. et al. Association of thigh muscle strength with knee symptoms and radiographic disease stage of osteoarthritis: Data from the Osteoarthritis Initiative. Arthritis Care Res 2014; 66: 1344-1353
- 50 Roemer FW, Jarraya M, Niu J. et al. Increased risk for radiographic osteoarthritis features in young active athletes: A cross-sectional matched case-control study. Osteoarthritis Cartilage 2014; 23: 239-243
- 51 Cotofana S, Wyman BTT, Benichou O. et al. Relationship between knee pain and the presence, location, size and phenotype offemorotibial denuded areas of subchondral bone as visualized by MRI. Osteoarthr Cartil 2013; 21: 1214-1222
- 52 Crema MD, Roemer FW, Zhu Y. et al. Subchondral cystlike lesions develop longitudinally in areas of bone marrow edema-like lesions in patients with or at risk for knee osteoarthritis: Detection with MR imaging—The MOST study. Radiology 2010; 256: 855-862
- 53 Yang Y, Li P, Zhu S. et al. Comparison of early-stage changes of osteoarthritis in cartilage and subchondral bone between two different rat models. PeerJ 2020; 8: e8934
- 54 Crema MDD, Cibere J, Sayre ECC. et al. The relationship between subchondral sclerosis detected with MRI and cartilage loss in a cohort of subjects with knee pain: The knee osteoarthritis progression (KOAP) study. Osteoarthr Cartil 2014; 22: 540-546
- 55 Bennell KL, Wrigley TV, Hunt MA. et al. Update on the role of muscle in the genesis and management of knee osteoarthritis. Rheum Dis Clin North Am 2013; 39: 145-176
- 56 Oiestad BE, Juhl CB, Eitzen I. et al. Knee extensor muscle weakness is a risk factor for development of knee osteoarthritis. A systematic review and meta-analysis. Osteoarthritis Cartilage 2014; 23: 171-177
- 57 Ruhdorfer AS, Dannhauer T, Wirth W. et al. Thigh muscle cross-sectional areas and strength in knees with early vs knees without radiographic knee osteoarthritis: A between-knee, within-person comparison. Osteoarthritis Cartilage 2014; 22: 1634-1638
- 58 Ruhdorfer A, Wirth W, Dannhauer T. Felix Eckstein Longitudinal (4 year) change of thigh muscle and adipose tissue distribution in chronically painful vs. painless knees – Data from the Osteoarthritis Initiative. Osteoarthritis Cartilage 2015; Aug;. 23 (08) : 1348-1356.
- 59 Blagojevic M, Jinks C, Jeffery A. et al. Risk factors for onset of osteoarthritis of the knee in older adults: A systematic review and meta-analysis. Osteoarthritis Cartilage 2010; 18: 24-33
- 60 Lohmander LS, Ostenberg A, Englund M. et al. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 2004; 50: 3145-3152
- 61 Muthuri S, McWilliams D, Doherty M. et al. History of knee injuries and knee osteoarthritis: A meta-analysis of observational studies. Osteoarthritis Cartilage 2011; 19: 1286-1293
- 62 Roos EM, Ostenberg A, Roos H. et al. Long-term outcome of meniscectomy: Sympotms, function, and performance tests in patient with or without radiographic osteoarthritis compared to matched controls. Osteoarthritis Cartilage 2001; 9: 316-324
- 63 Eckstein F, Wirth W, Lohmander LS. et al. Five-year followup of knee joint cartilage thickness changes after acute rupture of the anterior cruciate ligament. Arthritis Rheumatol 2015; 67: 152-161
- 64 Harkey MS, Luc BA, Golightly YM. et al. Osteoarthritis-related biomarkers following anterior cruciate ligament injury and reconstruction: A systematic review. Osteoarthritis Cartilage 2015; 23: 1-12
- 65 Driban JB, Eaton CB, Lo GH. et al. Association of knee injuries with accelerated knee osteoarthritis progression: Data from the Osteoarthritis Initiative. Arthritis Care Res 2014; 66: 1673-1679
- 66 Nordenvall R, Bahmanyar S, Adami J. et al Cruciate ligament reconstruction and risk of knee osteoarthritis: The association between cruciate ligament injury and posttraumatic osteoarthritis. a population based nationwide study in Sweden, 1987–2009. PLoS One 2014; 9: e104681
- 67 Valderrabano V, Hintermann B, Horisberger M. et al. Ligamentous posttraumatic ankle osteoarthritis. Am J Sports Med 2006; 34: 612-620
- 68 Fuggle N, Cooper C, Oreffo R. et al. Alternative and complementary therapies in osteoarthritis and cartilage repair. Aging Clin Exp Res 2020; 32: 547-560
- 69 AWMF Leitlinie Gonarthrose. 2018 , AWMF Registernummer: 033-004
- 70 He W, Kuang MJ, Zhao J. et al. Efficacy and safety of intraarticular hyaluronic acid and corticosteroid for knee osteoarthritis: A meta-analysis. Intl J Surg 2017; 39: 95-103
- 71 Bellamy N, Campbell J J, Robinson V. et al. Intraarticular Corticosteroid for Treatment of Osteoarthritis of the Knee/Cochrane Library. Hoboken, NJ, USA: John Wiley & Sons, Ltd.; 2005
- 72 Hirsch G, Kitas G, Klocke R. Intra-articular corticosteroid injection in osteoarthritis of the knee and hip: Factors predicting pain relief – a systematic review. Semin Arthritis Rheum 2013; 42: 451-473
- 73 Maheu E, Rannou F, Reginster JY. Efficacy and safety of hyaluronic acid in the management of osteoarthritis: Evidence from real-life setting trials and surveys. Semin Arthritis Rheum 2016; 45 (4 Suppl): S28-S33
- 74 Cooper C, Rannou F, Richette P. et al. Use of intraarticular hyaluronic acid in the management of knee osteoarthritis in clinical practice. Arthritis Care Res (Hoboken). 2017; 69 (09) : 1287-1296
- 75 Bellamy N, Campbell J, Robinson V. et al. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev 2006; 2: CD005321
- 76 Bannuru RR, Schmid CH, Kent DM. et al. Comparative effectiveness of pharmacologic interventions for knee osteoarthritis: A systematic review and network meta-analysis. Ann Intern Med 2015; 162: 46-54
- 77 Bannuru RR, Natov NS, Obadan IE. et al. Therapeutic trajectory of hyaluronic acid versus corticosteroids in the treatment of knee osteoarthritis: A systematic review and meta-analysis. Arthritis Rheum 2009; 61: 1704-1711
- 78 Bannuru RR, Natov NS, Dasi UR. et al. Therapeutic trajectory following intra-articular hyaluronic acid injection in knee osteoarthritis–meta-analysis. Osteoarthr Cartil 2011; 19: 611-619
- 79 Petrella RJ. Hyaluronic acid for the treatment of knee osteoarthritis: Long-term outcomes from a naturalistic primary care experience. Am J Phys Med Rehabil 2005; 84 (04) : 278-283
- 80 Altman R, Fredericson M, Bhattacharyya SK. et al. Association between hyaluronic acid injections and time-to-total knee replacement surgery. J Knee Surg 2016; 29 (07) : 564-570
- 81 Delbarre A, Amor B, Bardoulat I. et al. Do intra-articular hyaluronic acid injections delay total knee replacement in patients with osteoarthritis – a Cox model analysis. PLoS One 2017; 12: e0187227
- 82 McAlindon TE, Bannuru RR, Sullivan MC. et al. OARSI guidelines for the non-surgical management of knee osteoarthritis. Osteoarthr Cartil 2014; 22: 363-388
- 83 Hochberg MC, Altman RD, April KT. et al. American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res 2012; 64: 465-474
- 84 NICE. Osteoarthritis care and management in adults: Methods, evidence and recommendations. National Clinical Guideline Centre. London, UK: National Institute for Health and Care Excellence; 2014. February 2014. Report No. CG177
- 85 Jordan KM, Arden NK, Doherty M. et al. EULAR Recommendations 2003: An evidence based approach to the management of knee osteoarthritis: Report of a Task Force of the Standing Committee for International Clinical Studies Including Therapeutic Trials (ESCISIT). Ann Rheum Dis 2003; 62: 1145-1155
- 86 Jevsevar DS. Treatment of osteoarthritis of the knee: Evidence-based guideline, 2nd edition. J Am Acad Orthop Surg 2013; 21: 571-576
- 87 Trojian TH, Concoff AL, Joy SM. et al. AMSSM Scientific statement concerning viscosupplementation injections for knee osteoarthritis: Importance for individual patient outcomes. Clin J Sport Med 2016; 26: 1-11
- 88 Altman RD, Schemitsch E, Bedi A. Assessment of clinical practice guideline methodology for the treatment of knee osteoarthritis with intra-articular hyaluronic acid. Semin Arthritis Rheum 2015; 45: 132-139
- 89 Wang CT, Lin J, Chang CJ. et al. Therapeutic effects of hyaluronic acid on osteoarthritis of the knee. A meta-analysis of randomized controlled trials. J Bone Jt Surg Am 2004; 86-A: 538-545
- 90 Arrich J, Piribauer F, Mad P. et al. Intra-articular hyaluronic acid for the treatment of osteoarthritis of the knee: Systematic review and meta-analysis. CMAJ 2005; 172: 1039-1043
- 91 Medina JM, Thomas A, Denegar CR. Knee osteoarthritis: Should your patient opt for hyaluronic acid injection?. J Fam Pract 2006; 55: 669-675
- 92 Rutjes AW, Juni P, da Costa BR. et al. Viscosupplementation for osteoarthritis of the knee: A systematic review and meta-analysis. Ann Intern Med 2012; 157: 180-191
- 93 Miller LE, Block JE. US-approved intra-articular hyaluronic acid injections are safe and effective in patients with knee osteoarthritis: Systematic review and meta-analysis of randomized, saline-controlled trials. Clin Med Insights Arthritis Musculoskelet Disord 2013; 6: 57-63
- 94 Strand V, McIntyre LF, Beach WR. et al. Safety and efficacy of US-approved viscosupplements for knee osteoarthritis: A systematic review and meta-analysis of randomized, saline-controlled trials. J Pain Res 2015; 8: 217-228
- 95 Singh Jasvinder A, Shahrzad N, MacDonald R. et al Cochrane Database “Chondroitin for osteoarthritis”. Version published: 28 January 2015. https://doi.org/10.1002/14651858.CD005614.pub
- 96 Bruyere O, Cooper C, Pelletier JP. et al. An algorithm recommendation for the management of knee osteoarthritis in Europe and internationally: A report from a task force of the European Society for Clinical and Economic Aspects of Osteoporosis and Osteoarthritis (ESCEO). Semin Arthritis Rheum 2014; 44: 253-263
- 97 Brittberg M, Lindahl A, Nilsson A. et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889-895
- 98 Knutsen G, Drogset JO, Engebretsen L. et al. A randomized trial comparing autologous chondrocyte implantation with microfracture. Findings at five years. J Bone Joint Surg Am 2007; 89: 2105-2112
- 99 Saris DB, Vanlauwe J, Victor J. et al. Characterized chondrocyte implantation results in better structural repair when treating symptomatic cartilage defects of the knee in a randomized controlled trial versus microfracture. Am J Sports Med 2008; 36: 235-246
- 100 Vasiliadis HS, Wasiak J. Autologous chondrocyte implantation for full thickness articular cartilage defects of the knee. Cochrane Database Syst Rev 2010; (10) : CD003323
- 101 Sohn DH, Lottman LM, Lum LY. et al. Effect of gravity on localization of chondrocytes implanted in cartilage defects. Clin Orthop Related Res 2002; 394: 254-262
- 102 Saris D, Price A, Widuchowski W. et al. Matrix-applied characterized autologous cultured chondrocytes versus microfracture: Two-year follow-up of a prospective randomized trial. Am J Sports Med 2014; 42: 1384-1394
- 103 Ogura T, Bryant T, Minas T. Biological knee reconstruction with concomitant autologous chondrocyte implantation and meniscal allograft transplantation: Mid-to long-term outcomes. Orthop J Sports Med 2016; 4: 2325967116668490
- 104 Harrell CR, Markovic BS, Fellabaum C. et al. Mesenchymal stem cell-based therapy of osteoarthritis: Current knowledge and uture perspectives. Biomed Pharmacother 2019; 109: 2318-2326
- 105 Pastides P, Chimutengwende-Gordon M, Maffulli N. et al. Stem cell therapy for human cartilage defects: A systematic review. Osteoarthr Cartil 2013; 21: 646-654
- 106 Hached F, Vinatier C, Le Visage C. et al. Biomaterialassisted cell therapy in osteoarthritis: From mesenchymal stem cells to cell encapsulation. Best Pract Res Clin Rheumatol 2017; 31: 730-745
- 107 Jevotovsky DS, Alfonso AR, Einhorn TA. et al. Osteoarthritis and stem cell therapy in humans: A systematic review. Osteoarthritis Cartilage 2018; 26: 711-729
- 108 Hart D. Mesenchymal Stem Cells: The hope, the hype and the reality in the treatment of osteoarthritis, A knowledge synthesis of clinical research (2010–2016) emphasizing the safety and efficacy of stem cell treatment for osteoarthritis. Bone and Joint Health Strategic Clinical Network (BJH SCN). 2017 Stem Cell White Paper, 2017 page 1–57. www.albertahealthservice.ca/assets/about/scn/ahs-scn-bjh-stem-cell-oa-paper.pdf
- 109 Lamo-Espinosa JM, Mora G, Blanco JF. et al. Intra-articular injection of two different doses of autologous bone marrow mesenchymal stem cells versus hyaluronic acid in the treatment of knee osteoarthritis: Multicenter randomized controlled clinical trial (phase I/II). J Transl Med 2019; 14: 246
- 110 Pers YM, Rackwitz L, Ferreira R. et al. Adipose mesenchymal stromal cell-based therapy for severe osteoarthritis of the knee: A phase I dose-escalation trial. Stem Cells Transl Med 2016; 5: 847-856
- 111 Mascarenhas R, Saltzman BM, Fortier LA. et al. Role of platelet-rich plasma in articular cartilage injury and disease. J Knee Surg 2015; 28: 3-10
- 112 Kaux JF, Le Goff C, Seidel L. et al. Comparative study of five techniques of preparation of platelet-rich plasma. Pathol Biol (Paris) 2011; 59: 157-160
- 113 Lin KY, Yang CC, Hsu CJ. et al. Intra-articular Injection of platelet-rich plasma is superior to hyaluronic acid or saline solution in the treatment of mild to moderate knee osteoarthritis: A randomized, double-blind, triple-parallel, placebo-controlled clinical trial. Arthroscopy 2019; 35: 106-117
- 114 Huang Y, Liu X, Xu X. et al. Intra-articular injections of platelet-rich plasma, hyaluronic acid or corticosteroids for knee osteoarthritis: A prospective randomized controlled study. Orthopäde 2019; 48: 239-247
- 115 Filardo G, Kon E, Di Martino A. et al. Platelet-rich plasma vs hyaluronic acid to treat knee degenerative pathology: Study design and preliminary results of a randomized controlled trial. BMC Musculoskelet Disord 2012; 13: 229
- 116 Filardo G, Di Matteo B, Di Martino A. et al. Platelet-rich plasma intra-articular knee injections show no superiority versus viscosupplementation: A randomized controlled trial. Am J Sports Med 2015; 43: 1575-1582
- 117 Di Martino A, Di Matteo B, Papio T. et al. Platelet-rich plasma versus hyaluronic acid injections for the treatment of knee osteoarthritis: Results at 5 years of a double-blind, randomized controlled trial. Am J Sports Med 2019; Feb;. 47 (02) : 347-354
- 118 Campbell KA, Saltzman BM, Mascarenhas R. et al. Does intra-articular platelet-rich plasma injection provide clinically superior outcomes compared with other therapies in the treatment of knee osteoarthritis? A systematic review of overlapping metaanalyses. Arthroscopy 2015; 31: 2213-2221
- 119 Di Y, Han C, Zhao L. et al. Is local platelet-rich plasma injection clinically superior to hyaluronic acid for treatment of knee osteoarthritis? A systematic review of randomized controlled trials. Arthritis Res Ther 2018; 20: 128
- 120 Tubach F, Ravaud P, Martin-Mola E. et al. Minimum clinically important improvement and patient acceptable symptom state in pain and function in rheumatoid arthritis, ankylosing spondylitis, chronic back pain, hand osteoarthritis, and hip and knee osteoarthritis: Results from a prospective multinational study. Arthritis Care Res (Hoboken) 2015; 64: 1699-1707
- 121 Bikle DD. Vitamin D and bone. Curr Osteoporos Rep 2012; 10 (02) : 151-159
- 122 McAlindon TE, Felson DT, Zhang YQ. et al. Relation of dietary intake and serum levels of vitamin D to progression of osteoarthritis of the knee among participants in the Framingham Study. Ann Intern Med 1996; 125 (05) : 353-359
- 123 Tetlow LC, Woolley DE. Expression of vitamin D receptors and matrix metalloproteinases in osteoarthritic cartilage and human articular chondrocytes in vitro. Osteoarthr Cartil 2001; 9: 423-431
- 124 McAlindon T, LaValley M, Schneider E. et al. Effect of vitamin D supplementation on progression of knee pain and cartilage volume loss in patients with symptomatic osteoarthritis: A randomized controlled trial. JAMA 2013; 309: 155-162
- 125 Sanghi D, Mishra A, Sharma AC. et al. Does vitamin D improve osteoarthritis of the knee: A randomized controlled pilot trial. Clin Orthop Relat Res 2013; 471: 3556-3562
- 126 Arden NK, Cro S, Sheard S. et al. The effect of vitamin D supplementation on knee osteoarthritis, the VIDEO study: A randomized controlled trial. Osteoarthr Cartil 2016; 24: 1858-1866
- 127 Jin X, Jones G, Cicuttini F. et al. Effect of vitamin D supplementation on tibial cartilage volume and knee pain among patients with symptomatic knee osteoarthritis: A randomized clinical trial. JAMA 2016; 315: 1005-1013
- 128 Vaishya R, Vijay V, Lama P. et al. Does vitamin D deficiency influence the incidence and progression of knee osteoarthritis? A literature review. J Clin Orthop Trauma 2019; 10: 9-15
- 129 Goel A, Kunnumakkara AB, Aggarwal BB. Curcumin as “Curecumin”: From kitchen to clinic. Biochem Pharmacol 2008; 75: 787-809
- 130 Daily JW, Yang M, Park S. Efficacy of turmeric extracts and curcumin for alleviating the symptoms of joint arthritis: A systematic review and meta-analysis of randomized clinical trials. J Med Food 2016; 19: 717-729
- 131 Bannuru RR, Osani MC, Al-Eid F. et al. Efficacy of curcumin and Boswellia for knee osteoarthritis: Systematic review and meta-analysis. Semin Arthritis Rheum 2018; 48: 416-429
- 132 Henrotin Y, Malaise M, Wittoek R. et al. Bio-optimized Curcuma longa extract is efficient on knee osteoarthritis pain: A double-blind multicenter randomized placebo controlled threearm study. Arthritis Res Ther 2019; 21: 179
- 133 Gagnier JJ, Chrubasik S, Manheimer E. Harpgophytum procumbens for osteoarthritis and low back pain: A systematic review. BMC Complement Altern Med 2004; 4: 13
- 134 Wigler I, Grotto I, Caspi D. et al. The effects of Zintona EC (a ginger extract) on symptomatic gonarthritis. Osteoarthr Cartil 2003; 11: 783-789
- 135 Altman RD. Marcussen KC Effects of a ginger extract on knee pain in patients with osteoarthritis. Arthritis Rheum 2001; 44: 2531-2538
- 136 Leach MJ. Kumar S The clinical effectiveness of Ginger (Zingiber officinale) in adults with osteoarthritis. Int J Evid Based Healthc 2008; 6: 311-320
- 137 Bartels EM, Folmer VN, Bliddal H. et al. Efficacy and safety of ginger in osteoarthritis patients: A meta-analysis of randomized placebo-controlled trials. Osteoarthr Cartil 2015; 23: 13-21