Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000159.xml
Radiopraxis 2020; 13(04): E80-E97
DOI: 10.1055/a-1218-5129
DOI: 10.1055/a-1218-5129
CPD–Fortbildung
PET-basierte Bestrahlungsplanung
PET based radiation planningDie Strahlentherapie ist fest in der Behandlung von Kopf-Hals-Tumoren verankert, und die [18F]-FDG-PET hat als PET / CT und PET / MRT einen zunehmenden Stellenwert in der personalisierten Therapie bei Kopf-Hals-Tumoren. Der Beitrag thematisiert die elementare Bedeutung einer Erfassung der genauen Tumorausdehnung und der daraus resultierenden Bestimmung der Tumorvolumina in der bildbasierten Strahlentherapieplanung als Grundlage für die erfolgreiche Bestrahlung.
Publication History
Article published online:
02 December 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Stromberger C. Primäre und adjuvante Radio(chemo)therapie bei Kopf-Hals-Tumoren. Onkologe 2019; 25: 240-245 DOI: 10.1007/s00761-018-0518-5.
- 2 Rasch C, Steenbakkers R, van Herk M. Target definition in prostate, head, and neck. Semin Radiat Oncol 2005; 15: 136-145
- 3 Ligtenberg H, Jager EA, Caldas-Magalhaes J. et al. Modalityspecific target definition for laryngeal and hypopharyngeal cancer on FDG-PET, CT and MRI. Radiother Oncol 2017; 123: 63-70 DOI: 10.1016/j.radonc.2017.02.005.
- 4 Cacicedo J, Navarro A, Del Hoyo O. et al. Role of fluorine-18 fluorodeoxyglucose PET / CT in head and neck oncology: the point of view of the radiation oncologist. Br J Radiol 2016; 89: 20160217 DOI: 10.1259/bjr.20160217.
- 5 Daisne JF, Duprez T, Weynand B. et al. Tumor volume in pharyngolaryngeal squamous cell carcinoma: comparison at CT, MR imaging, and FDG PET and validation with surgical specimen. Radiology 2004; 233: 93-100 DOI: 10.1148/radiol. 2331030660.
- 6 Anderson CM, Sun W, Buatti JM. et al. Interobserver and intermodality variability in GTV delineation on simulation CT, FDG-PET, and MR Images of Head and Neck Cancer. Jacobs J Radiat Oncol 2014; 1: 006
- 7 Rusthoven KE, Koshy M, Paulino AC. The role of fluorodeoxyglucose positron emission tomography in cervical lymph node metastases from an unknown primary tumor. Cancer 2004; 101: 2641-2649 DOI: 10.1002/cncr.20687.
- 8 Zhu L, Wang N. 18F-fluorodeoxyglucose positron emission tomography-computed tomography as a diagnostic tool in patients with cervical nodal metastases of unknown primary site: a meta-analysis. Surg Oncol 2013; 22: 190-194 DOI: 10.1016/j.suronc.2013.06.002.
- 9 Büther F. Von PET und PET / CT zur PET / MRT: Ein technologisches Update. Nuklearmediziner 2018; 41: 202-210
- 10 Geets X, Lee JA, Bol A. et al. A gradient-based method for segmenting FDG-PET images: methodology and validation.. Eur J Nucl Med Mol Imaging 2007; 34: 1427-1438 DOI: 10.1007/s00259-006-0363-4.
- 11 Purandare NC, Agrawal A, Shah S. et al. 18F FDG PET / CT: Normal variants, artefacts and pitfalls in head and neck malignancy. In: Wong WL eds. PET / CT in head and neck cancer. Berlin: Springer; 2018: 29-42
- 12 Krause BJ, Beyer T, Bockisch A. et al. FDG-PET / CT in der Onkologie. Leitlinie der Deutschen Gesellschaft für Nuklearmedizin e. V. DGN. Nuklearmedizin 2007; 46: 291-301
- 13 Fukui MB, Blodgett TM, Snyderman CH. et al. Combined PETCT in the head and neck: part 2. Diagnostic uses and pitfalls of oncologic imaging. Radiographics 2005; 25: 913-930 DOI: 10.1148/rg.254045136.
- 14 Jeong J, Setton JS, Lee NY. et al. Estimate of the impact of FDG-avidity on the dose required for head and neck radiotherapy local control. Radiother Oncol 2014; 111: 340-347 DOI: 10.1016/j.radonc.2014.03.018.
- 15 Madani I, Duthoy W, Derie C. et al. Positron emission tomography-guided, focal-dose escalation using intensity-modulated radiotherapy for head and neck cancer. Int J Radiat Oncol Biol Phys 2007; 68: 126-135 DOI: 10.1016/j. ijrobp.2006.12.070.
- 16 Henriques de Figueiredo B, Zacharatou C, Galland-Girodet S. et al. Hypoxia imaging with [18F]-FMISO-PET for guided dose escalation with intensity-modulated radiotherapy in headand-neck cancers. Strahlenther Onkol 2015; 191: 217-224 DOI: 10.1007/s00066-014-0752-8.
- 17 Monnich D, Thorwarth D, Leibfarth S. et al. Overlap of highly FDG-avid and FMISO hypoxic tumor subvolumes in patients with head and neck cancer. Acta Oncol 2017; 56: 1577-1582 DOI: 10.1080/0284186x.2017.1363910.
- 18 Overgaard J. Hypoxic radiosensitization: adored and ignored. J Clin Oncol 2007; 25: 4066-4074 DOI: 10.1200/jco.2007.12.7878.
- 19 Xu Z, Li XF, Zou H. et al. (18)F-Fluoromisonidazole in tumor hypoxia imaging. Oncotarget 2017; 8: 94969-94979 DOI: 10.18632/oncotarget.21662.
- 20 Henriques de Figueiredo B, Merlin T, de Clermont-Gallerande H et al. Potential of [18F]-fluoromisonidazole positronemission tomography for radiotherapy planning in head and neck squamous cell carcinomas. Strahlenther Onkol 2013; 189: 1015-1019 DOI: 10.1007/s00066-013-0454-7.
- 21 Eschmann S, Paulsen F. Bedeutung der Hypoxiebildgebung mit PET für die Bestrahlungsplanung. Nuklearmediziner 2008; 31: 33-36
- 22 Chang JH, Wada M, Anderson NJ. et al. Hypoxia-targeted radiotherapy dose painting for head and neck cancer using (18)F-FMISO PET: a biological modeling study. Acta Oncol 2013; 52: 1723-1729 DOI: 10.3109/0284186x.2012.759273.
- 23 Lock S, Perrin R, Seidlitz A. et al. Residual tumour hypoxia in head-and-neck cancer patients undergoing primary radiochemotherapy, final results of a prospective trial on repeat FMISO-PET imaging. Radiother Oncol 2017; 124: 533-540 DOI: 10.1016/j.radonc.2017.08.010.
- 24 Carlin S, Humm JL. PET of hypoxia: current and future perspectives. J Nucl Med 2012; 53: 1171-1174 DOI: 10.2967/jnumed.111.099770.
- 25 Watanabe S, Shiga T, Hirata K. et al. Biodistribution and radiation dosimetry of the novel hypoxia PET probe [(18)F] DiFA and comparison with [(18)F]FMISO. EJNMMI Res 2019; 9: 60 DOI: 10.1186/s13550-019-0525-6.
- 26 Hoeben BA, Troost EG, Span PN. et al. 18F-FLT PET during radiotherapy or chemoradiotherapy in head and neck squamous cell carcinoma is an early predictor of outcome. J Nucl Med 2013; 54: 532-540 DOI: 10.2967/jnumed.112.105999.
- 27 Szyszko TA, Cook GJR. PET / CT and PET / MRI in head and neck malignancy. Clin Radiol 2018; 73: 60-69 DOI: 10.1016/j. crad.2017.09.001.
- 28 Samolyk-Kogaczewska N, Sierko E, Zuzda K. et al. PET / MRIguided GTV delineation during radiotherapy planning in patients with squamous cell carcinoma of the tongue. Strahlenther Onkol 2019 DOI: 10.1007/s00066-019-01480-3
- 29 Wang K, Mullins BT, Falchook AD. et al. Evaluation of PET / MRI for tumor volume delineation for head and neck cancer. Front Oncol 2017; 7: 8 DOI: 10.3389/fonc.2017.00008.
- 30 Becker M, Varoquaux AD, Combescure C. et al. Local recurrence of squamous cell carcinoma of the head and neck after radio(chemo)therapy: Diagnostic performance of FDGPET / MRI with diffusion-weighted sequences. Eur Radiol 2018; 28: 651-663 DOI: 10.1007/s00330-017-4999-1.
- 31 Stumpp P, Purz S, Sabri O. et al. [Molecular imaging of head and neck cancers: Perspectives of PET / MRI]. Radiologe 2016; 56: 588-596 DOI: 10.1007/s00117-016-0125-7.
- 32 Bailey DL, Pichler BJ, Guckel B. et al. Combined PET / MRI: from status quo to status go. Summary report of the Fifth International Workshop on PET / MR Imaging. February 15-19, 2016; Tubingen, Germany. Mol Imaging Biol 2016; 18: 637-650 DOI: 10.1007/s11307-016-0993-2.
- 33 Lagendijk JJ, Raaymakers BW. Van den Berg CA et al. MR guidance in radiotherapy. Phys Med Biol 2014; 59: R349-369 DOI: 10.1088 / 0031-9155 / 59 / 21 / r349.
- 34 Winter RM, Leibfarth S, Schmidt H. et al. Assessment of image quality of a radiotherapy-specific hardware solution for PET / MRI in head and neck cancer patients. Radiother Oncol 2018; 128: 485-491 DOI: 10.1016/j.radonc. 2018.04.018.
- 35 Rai R, Kumar S, Batumalai V. et al. The integration of MRI in radiation therapy: collaboration of radiographers and radiation therapists. J Med Radiat Sci 2017; 64: 61-68 DOI: 10.1002/jmrs.225.
- 36 Kao J, Vu HL, Genden EM. et al. The diagnostic and prognostic utility of positron emission tomography / computed tomography-based follow-up after radiotherapy for head and neck cancer. Cancer 2009; 115: 4586-4594 DOI: 10.1002/cncr.24493.
- 37 Gupta T, Master Z, Kannan S. et al. Diagnostic performance of post-treatment FDG PET or FDG PET / CT imaging in head and neck cancer: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2011; 38: 2083-2095 DOI: 10.1007/s00259-011-1893-y.
- 38 Mehanna H, Wong WL, McConkey CC. et al. PET-CT Surveillance versus neck dissection in advanced head and neck cancer. N Engl J Med 2016; 374: 1444-1454 DOI: 10.1056 / NEJMoa1514493.
- 39 coll Tragende Gründe zum Beschluss des Gemeinsamen Bundesausschusses über eine Änderung der Richtlinie Methoden vertragsärztliche Versorgung: Positronenemissionstomographie (PET) PET / Computertomographie (CT) bei Kopf-Hals-Tumoren (Juni 2017). Im Internet: (Stand: 27. 12.2019) http://www.g-ba.de/downloads/40-268-4266/2017-03-16_MVV-RL_PETCT-Kopf-Hals-Tumoren_TrG.pdf
- 40 Ong SC, Schoder H, Lee NY. et al. Clinical utility of 18F-FDG PET / CT in assessing the neck after concurrent chemoradiotherapy for Locoregional advanced head and neck cancer. J Nucl Med 2008; 49: 532-540 DOI: 10.2967/jnumed. 107.044792.
- 41 Leung AS, Rath TJ, Hughes MA. et al. Optimal timing of first posttreatment FDG PET / CT in head and neck squamous cell carcinoma. Head Neck 2016; 38 (Suppl. 01): E853-858 DOI: 10.1002/hed.24112.
- 42 Helsen N, Roothans D, Van Den Heuvel B. et al. 18F-FDG-PET / CT for the detection of disease in patients with head and neck cancer treated with radiotherapy. PLoS One 2017; 12: e0182350 DOI: 10.1371/journal.pone.0182350.
- 43 Sheikhbahaei S, Ahn SJ, Moriarty E. et al. Intratherapy or posttherapy FDG PET or FDG PET / CT for patients with head and neck cancer: a systematic review and meta-analysis of prognostic studies. Am J Roentgenol 2015; 205: 1102-1113 DOI: 10.2214/ajr.15.14647.
- 44 Beswick DM, Gooding WE, Johnson JT. et al. Temporal patterns of head and neck squamous cell carcinoma recurrence with positron-emission tomography / computed tomography monitoring. Laryngoscope 2012; 122: 1512-1517 DOI: 10.1002/lary.23341.
- 45 Smith AF, Hall PS, Hulme CT. et al. Cost-effectiveness analysis of PET-CT-guided management for locally advanced head and neck cancer. Eur J Cancer 2017; 85: 6-14 DOI: 10.1016/j.ejca.2017.07.054.
- 46 Castelli J, De Bari B, Depeursinge A. et al. Overview of the predictive value of quantitative 18 FDG PET in head and neck cancer treated with chemoradiotherapy. Crit Rev Oncol Hematol 2016; 108: 40-51 DOI: 10.1016/j.critrevonc. 2016.10.009.
- 47 Wang L, Bai J, Duan P. Prognostic value of 18F-FDG PET / CT functional parameters in patients with head and neck cancer: a meta-analysis. Nucl Med Commun 2019; 40: 361-369 DOI: 10.1097 / mnm.0000000000000974.
- 48 Kim KR, Shim HJ, Hwang JE. et al. The role of interim FDG PET-CT after induction chemotherapy as a predictor of concurrent chemoradiotherapy efficacy and prognosis for head and neck cancer. Eur J Nucl Med Mol Imaging 2018; 45: 170-178 DOI: 10.1007/s00259-017-3836-8.
- 49 Wong KH, Panek R, Welsh L et al.. The predictive value of early assessment after 1 cycle of induction chemotherapy with 18F-FDG PET / CT and diffusion-weighted mri for response to radical chemoradiotherapy in head and neck squamous cell carcinoma. J Nucl Med 2016; 57: 1843-1850 DOI: 10.2967/jnumed.116.174433.
- 50 Schinagl DA, Vogel WV, Hoffmann AL. et al. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer. Int J Radiat Oncol Biol Phys 2007; 69: 1282-1289 DOI: 10.1016/j.ijrobp.2007.07.2333.
- 51 Perez-Romasanta LA, Bellon-Guardia M, Torres-Donaire J. et al. Tumor volume delineation in head and neck cancer with 18-fluor-fluorodeoxiglucose positron emission tomography: adaptive thresholding method applied to primary tumors and metastatic lymph nodes. Clin Transl Oncol 2013; 15: 283-293 DOI: 10.1007/s12094-012-0914-z.
- 52 Leclerc M, Lartigau E, Lacornerie T. et al. Primary tumor delineation based on (18)FDG PET for locally advanced head and neck cancer treated by chemo-radiotherapy. Radiother Oncol 2015; 116: 87-93 : 10.1016 / j.radonc. 2015.06.007
- 53 Speer S, Klein A, Kober L. et al. Automation of radiation treatment planning: Evaluation of head and neck cancer patient plans created by the Pinnacle(3) scripting and Auto-Planning functions. Strahlenther Onkol 2017; 193: 656-665 DOI: 10.1007/s00066-017-1150-9.
- 54 Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology 2016; 278: 563-577 DOI: 10.1148/radiol.2015151169.
- 55 Deist TM, Dankers F, Valdes G. et al. Machine learning algorithms for outcome prediction in (chemo)radiotherapy: An empirical comparison of classifiers. Med Phys 2018; 45: 3449-3459 DOI: 10.1002/mp.12967.
- 56 Cozzi L, Franzese C, Fogliata A. et al. Predicting survival and local control after radiochemotherapy in locally advanced head and neck cancer by means of computed tomography based radiomics. Strahlenther Onkol 2019 DOI: 10.1007 / s00066-019-01483-0
- 57 Castelli J, Depeursinge A, Devillers A. et al. PET-based prognostic survival model after radiotherapy for head and neck cancer. Eur J Nucl Med Mol Imaging 2019; 46: 638-649 DOI: 10.1007 / s00259-018-4134-9.
- 58 Hatt M, Tixier F, Pierce L. et al. Characterization of PET / CT images using texture analysis: the past, the present … any future? Eur J Nucl Med Mol Imaging 2017; 44: 151-165 DOI: 10.1007/s00259-016-3427-0.