Thieme E-Books & E-Journals -
Back
CC BY-NC-ND 4.0 · Endosc Int Open 2020; 08(10): E1341-E1348
DOI: 10.1055/a-1220-6596
Original article

Diagnostic performance of artificial intelligence to identify deeply invasive colorectal cancer on non-magnified plain endoscopic images

Yuki Nakajima
1   Coloproctology & Gastroenterology, Aizu Medical Center, Fukushima Medical University, Japan
,
Xin Zhu
2   Biomedical Information Engineering Lab, the University of Aizu, Japan
,
Daiki Nemoto
1   Coloproctology & Gastroenterology, Aizu Medical Center, Fukushima Medical University, Japan
,
Qin Li
2   Biomedical Information Engineering Lab, the University of Aizu, Japan
,
Zhe Guo
2   Biomedical Information Engineering Lab, the University of Aizu, Japan
,
Shinichi Katsuki
3   Gastroenterology, Otaru Ekisaikai Hospital, Japan
,
Yoshikazu Hayashi
4   Gastroenterology, Jichi Medical University, Japan
,
Kenichi Utano
1   Coloproctology & Gastroenterology, Aizu Medical Center, Fukushima Medical University, Japan
,
Masato Aizawa
1   Coloproctology & Gastroenterology, Aizu Medical Center, Fukushima Medical University, Japan
,
Takahito Takezawa
4   Gastroenterology, Jichi Medical University, Japan
,
Yuichi Sagara
4   Gastroenterology, Jichi Medical University, Japan
,
Goro Shibukawa
1   Coloproctology & Gastroenterology, Aizu Medical Center, Fukushima Medical University, Japan
,
Hironori Yamamoto
4   Gastroenterology, Jichi Medical University, Japan
,
Alan Kawarai Lefor
5   Surgery, Jichi Medical University, Japan
,
Kazutomo Togashi
1   Coloproctology & Gastroenterology, Aizu Medical Center, Fukushima Medical University, Japan
› Author Affiliations