Planta Med 2020; 86(15): 1108-1117
DOI: 10.1055/a-1232-6869
Biological and Pharmacological Activity
Original Papers

A New Diterpene and Anti-inflammatory Sesquiterpene Lactones from Sigesbeckia orientalis [*]

Nora S. Engels
1   Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
,
Barbara Gierlikowska
2   Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
3   Department of Laboratory Diagnostics and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
,
1   Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
,
Fang-Rong Chang
4   Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung, Taiwan
5   National Research Institute of Chinese Medicine, Ministry of Health and Welfare, Taipei, Taiwan
,
Anna K. Kiss
2   Department of Pharmacognosy and Molecular Basis of Phytotherapy, Medical University of Warsaw, Warsaw, Poland
,
Hermann Stuppner
1   Institute of Pharmacy/Pharmacognosy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
› Author Affiliations
Supported by: OeAD-GmbH PL13/2015

Abstract

Sigesbeckia orientalis, more commonly referred to as Herba Sigesbeckiae or Xi Xian Cao in traditional Chinese medicine and hy thiêm in traditional Vietnamese medicine, is used in China and Vietnam to treat inflammatory diseases such as arthritis, rheumatism, and joint pain. In initial investigations, the dichloromethane extract from the aerial parts of S. orientalis showed distinct inhibitory effects on the release of interleukin-8 in human neutrophils. Therefore, the purpose of the present study was the phytochemical investigation of the bioactive dichloromethane extract and the in vitro analysis of the effects of the isolated compounds on interleukin-8, interleukin-1β, tumor necrosis factor-α, and monocyte chemoattractant protein 1 release, and surface expression of adhesion molecules (CD11a, CD11b, and CD62L) in lipopolysaccharide-stimulated human neutrophils to identify the active principle(s). The separation of the bioactive dichloromethane extract using various chromatographic techniques led to the isolation of nine compounds. Their chemical structures were elucidated from nuclear magnetic resonance and mass spectrometry data. One diterpene, 17(13 → 14)-abeo-ent-3S*,13S*,16-trihydroxystrob-8(15)-ene, was identified as a new natural product. Three germacranolide sesquiterpene lactones inhibited interleukin-8 production with IC50 values between 1.6 and 6.3 µM, respectively, and tumor necrosis factor-α production with IC50 values between 0.9 and 3.3 µM, respectively. Furthermore, they significantly inhibited interleukin-1β and monocyte chemoattractant protein 1 production and diminished the effects of lipopolysaccharide on the surface expression of the adhesion molecules CD11a, CD11b, and CD62L. These findings support the traditional use of S. orientalis in the treatment of inflammatory diseases.

* Dedicated to Professor Dr. Wolfgang Kubelka on the occasion of his 85th birthday.


Supporting Information



Publication History

Received: 15 January 2020

Accepted after revision: 27 July 2020

Article published online:
21 September 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Quattrocchi U. CRC World Dictionary of medicinal and poisonous Plants: common Names, scientific Names, Eponyms, Synonyms, and Etymology. Boca Raton, FL: CRC Press, Taylor & Francis Group; 2012
  • 2 Manjusha V, Merugu M. Spectrophotometric estimation of antioxidant activity of Siegesbeckia orientalis plant extracts by hydrogen peroxide scavenging method. World J Pharm Pharm Sci 2017; 6: 1526-1531
  • 3 Su JD, Osawa T, Namiki M. Screening for antioxidative activity of crude drugs. Agric Biol Chem 1986; 50: 199-203
  • 4 Sun HX, Wang H. Immunosuppressive activity of the ethanol extract of Siegesbeckia orientalis on the immune responses to ovalbumin in mice. Chem Biodivers 2006; 3: 754-761
  • 5 Nguyen TD, Thuong PT, Hwang IH, Hoang TK, Nguyen MK, Nguyen HA, Na M. Anti-hyperuricemic, anti-inflammatory and analgesic effects of Siegesbeckia orientalis L. resulting from the fraction with high phenolic content. BMC Complement Altern Med 2017; 17: 191
  • 6 Hong YH, Weng LW, Chang CC, Hsu HF, Wang CP, Wang SW, Houng JY. Anti-inflammatory effects of Siegesbeckia orientalis ethanol extract in in vitro and in vivo models. Biomed Res Int 2014; 2014: 329712
  • 7 Guo H, Zhang Y, Cheng BC, Lau MY, Fu XQ, Li T, Su T, Zhu PL, Chan YC, Tse AK, Yi T, Chen HB, Yu ZL. Comparison of the chemical profiles and inflammatory mediator-inhibitory effects of three Siegesbeckia herbs used as Herba Siegesbeckiae (Xixiancao). BMC Complement Altern Med 2018; 18: 141
  • 8 Gao X, Wei J, Hong L, Fan S, Hu G, Jia J. Comparative analysis of chemical composition, anti-inflammatory activity and antitumor activity in essential oils from Siegesbeckia orientalis, S. glabrescens and S. pubescens with an ITS sequence analysis. Molecules 2018; 23: 2185
  • 9 Lu Y, Xiao J, Wu ZW, Wang ZM, Hu J, Fu HZ, Chen YY, Qian RQ. Kirenol exerts a potent anti-arthritic effect in collagen-induced arthritis by modifying the T cells balance. Phytomedicine 2012; 19: 882-889
  • 10 Wang JP, Zhou YM, Ye YJ, Shang XM, Cai YL, Xiong CM, Wu YX, Xu HX. Topical anti-inflammatory and analgesic activity of kirenol isolated from Siegesbeckia orientalis . J Ethnopharmacol 2011; 137: 1089-1094
  • 11 Lintner K. Purified plant extracts. Demonstrating the cosmetic activity of darutoside, esculoside and ursolic acid. Cosm Toil 1998; 113: 67-73
  • 12 Li H, Zhao JJ, Chen JL, Zhu LP, Wang DM, Jiang L, Yang DP, Zhao ZM. Diterpenoids from aerial parts of Flickingeria fimbriata and their nuclear factor-kappaB inhibitory activities. Phytochemistry 2015; 117: 400-409
  • 13 Hellebrekers P, Vrisekoop N, Koenderman L. Neutrophil phenotypes in health and disease. Eur J Clin Invest 2018; 48 (Suppl. 02) e12943
  • 14 Scapini P, Lapinet-Vera JA, Gasperini S, Calzetti F, Bazzoni F, Cassatella MA. The neutrophil as a cellular source of chemokines. Immunol Rev 2000; 177: 195-203
  • 15 Baggiolini M, Clark-Lewis I. Interleukin-8, a chemotactic and inflammatory cytokine. FEBS Lett 1992; 307: 97-101
  • 16 Wang J, Duan H, Wang Y, Pan B, Gao C, Gai C, Wu Q, Fu H. ent-Strobane and ent-pimarane diterpenoids from Siegesbeckia pubescens . J Nat Prod 2017; 80: 19-29
  • 17 Li H, Kim JY, Hyeon J, Lee HJ, Ryu JH. In vitro antiinflammatory activity of a new sesquiterpene lactone isolated from Siegesbeckia glabrescens . Phytother Res 2011; 25: 1323-1327
  • 18 Barua RN, Sharma RP, Thyagarajan G, Herz W, Govindan SV. New melampolides and darutigenol from Sigesbeckia orientalis . Phytochemistry 1980; 19: 323-325
  • 19 Rustaiyan A, Saberi M, Habibi Z, Jakupovic J. Melampolides and other constituents from Furinea leptoloba . Phytochemistry 1991; 30: 1929-1932
  • 20 Baruah RN, Sharma RP, Madhusudanan KP, Thyagarajan G, Herz W, Murari R. A new melampolide from Sigesbeckia orientalis . Phytochemistry 1979; 18: 991-994
  • 21 Uemura D, Sugiura K, Hirata Y. O-Acetyl-N-(Nʼ-benzoyl-L-phenylalanyl)-L-phenylalaninol. Isolation from Euphorbia fischeriana Steudel. Chem Lett 1975; 4: 537-538
  • 22 Giang PM, Son PT, Otsuka H. ent-Pimarane-type diterpenoids from Siegesbeckia orientalis L. Chem Pharm Bull 2005; 53: 232-234
  • 23 Mompon B, Toubian R. Lactones sesquiterpeniques du Vernonia pectoralis Baker (composees). Stereochimie du pectorolide, et structure des vernopectolides-A et B. Tetrahedron 1976; 32: 2545-2548
  • 24 Souto FO, Zarpelon AC, Staurengo-Ferrari L, Fattori V, Casagrande R, Fonseca MJ, Cunha TM, Ferreira SH, Cunha FQ, Verri WA. Quercetin reduces neutrophil recruitment induced by CXCL8, LTB4, and fMLP: inhibition of actin polymerization. J Nat Prod 2011; 74: 113-118
  • 25 Liu JJ, Song CW, Yue Y, Duan CG, Yang J, He T, He YZ. Quercetin inhibits LPS-induced delay in spontaneous apoptosis and activation of neutrophils. Inflamm Res 2005; 54: 500-507
  • 26 Michalak B, Filipek A, Chomicki P, Pyza M, Wozniak M, Zyzynska-Granica B, Piwowarski JP, Kicel A, Olszewska MA, Kiss AK. Lignans from Forsythia x intermedia leaves and flowers attenuate the pro-inflammatory function of leukocytes and their interaction with endothelial cells. Front Pharmacol 2018; 9: 401
  • 27 Melgarejo E, Medina MA, Sanchez-Jimenez F, Urdiales JL. Monocyte chemoattractant protein-1: a key mediator in inflammatory processes. Int J Biochem Cell Biol 2009; 41: 998-1001
  • 28 Etzioni A. Adhesion molecules – their role in health and disease. Pediatr Res 1996; 39: 191-198
  • 29 Venturi GM, Tu L, Kadono T, Khan AI, Fujimoto Y, Oshel P, Bock CB, Miller AS, Albrecht RM, Kubes P, Steeber DA, Tedder TF. Leukocyte migration is regulated by L-selectin endoproteolytic release. Immunity 2003; 19: 713-724
  • 30 Qazi BS, Tang K, Qazi A. Recent advances in underlying pathologies provide insight into interleukin-8 expression-mediated inflammation and angiogenesis. Int J Inflam 2011; 2011: 908468
  • 31 Popa C, Netea MG, van Riel PL, van der Meer JW, Stalenhoef AF. The role of TNF-alpha in chronic inflammatory conditions, intermediary metabolism, and cardiovascular risk. J Lipid Res 2007; 48: 751-762
  • 32 Dinarello CA. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011; 117: 3720-3732
  • 33 Kwok BH, Koh B, Ndubuisi MI, Elofsson M, Crews CM. The anti-inflammatory natural product parthenolide from the medicinal herb feverfew directly binds to and inhibits IkappaB kinase. Chem Biol 2001; 8: 759-766
  • 34 Lyss G, Schmidt TJ, Merfort I, Pahl HL. Helenalin, an anti-inflammatory sesquiterpene lactone from Arnica, selectively inhibits transcription factor NF-kappaB. Biol Chem 1997; 378: 951-961
  • 35 Wang KS, Li J, Wang Z, Mi C, Ma J, Piao LX, Xu GH, Li X, Jin X. Artemisinin inhibits inflammatory response via regulating NF-kappaB and MAPK signaling pathways. Immunopharmacol Immunotoxicol 2017; 39: 28-36
  • 36 Mazor RL, Menendez IY, Ryan MA, Fiedler MA, Wong HR. Sesquiterpene lactones are potent inhibitors of interleukin 8 gene expression in cultured human respiratory epithelium. Cytokine 2000; 12: 239-245
  • 37 Siedle B, Garcia-Pineres AJ, Murillo R, Schulte-Monting J, Castro V, Rungeler P, Klaas CA, Da Costa FB, Kisiel W, Merfort I. Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-kappaB. J Med Chem 2004; 47: 6042-6054