Subscribe to RSS
DOI: 10.1055/a-1243-0746
Proposal of a Multivariable Prediction Model for Graded Morbidity after Liver Resection for Colorectal Metastases
Prognose der Morbidität nach Leberresektion kolorektaler Lebermetastasen – Vorstellung eines multivariablen ModellsAbstract
Background Prognostic models to predict individual early postoperative morbidity after liver resection for colorectal liver metastases (CLM) are not available but could enable optimized preoperative patient selection and postoperative surveillance for patients at greater risk of complications. The aim of this study was to establish a prognostic model for the prediction of morbidity after liver resection graded according to Dindo.
Methods N = 679 cases of primary liver resection for CLM were retrospectively analyzed using univariable and multivariable ordinal regression analyses. Receiver operating characteristics curve (ROC) analysis was utilised to assess the sensitivity and specificity of predictions and their potential usefulness as prognostic models. Internal validation of the score was performed using data derived from 129 patients.
Results The final multivariable regression model revealed lower preoperative levels, a greater number of units of intraoperatively transfused packed red blood cells (pRBCs), longer duration of surgery, and larger metastases to independently influence postoperatively graded morbidity. ROC curve analysis demonstrated that the multivariable regression model is able to predict each individual grade of postoperative morbidity with high sensitivity and specificity. The areas under the receiver operating curves (AUROC) for all of these predictions of individual grades of morbidity were > 0.700, indicating potential usefulness as a predictive model. Moreover, a consistent concordance in Grades I, II, IV, and V according to the classification proposed by Dindo et al. was observed in the internal validation.
Conclusion This study proposes a prognostic model for the prediction of each grade of postoperative morbidity after liver resection for CLM with high sensitivity and specificity using pre- and intraoperatively available variables.
Zusammenfassung
Hintergrund Prognostische Modelle zur Vorhersage der individuellen früh-postoperativen Morbidität nach Leberresektion von kolorektalen Lebermetastasen sind nicht verfügbar, könnten aber eine optimierte präoperative Patientenselektion und postoperative Überwachung von Patienten mit erhöhtem Risiko ermöglichen. Ziel dieser Studie war daher ein prognostisches Modell für die Vorhersage der Morbidität nach Leberresektion klassifiziert nach Dindo zu etablieren.
Methoden N = 679 Fälle von primären Leberresektionen kolorektaler Lebermetastasen wurden retrospektiv unter Nutzung von multivariabel und ordinalen Regressionsanalysen ausgewertet. Analysen der Receiver operating characteristics curve (ROC) wurden zur Überprüfung der Sensitivität und Spezifität der Vorhersagen und der potenziellen Bedeutung als prognostisches Modell eingesetzt. Das Modell wurde anhand weiterer 129 Fälle intern validiert.
Ergebnisse Das finale multivariable Regressionsmodel zeigte für niedrige präoperative Hb-Werte, hohen intraoperativen Transfusionsbedarf, lange OP-Zeiten sowie größere Metastasen einen deutlichen Einfluss auf die postoperative Morbidität. Die Analyse der ROC-curve beweist die Fähigkeit des multivariable Regressionsmodels die einzelnen Grade postoperativer Morbidität mit hoher Spezifität und Sensitivität vorherzusagen. Die “Area under the receiver operating curve” (AUROC) für die Vorhersage aller einzelnen Morbiditätsgrade von > 0,700 unterstreicht den potenziellen Nutzen als prognostisches Model. Die interne Validierung zeigt eine klare Konkordanz hinsichtlich der Grade I, II, IV und V nach Dindo.
Schlussfolgerung Diese Studie schlägt ein prognostisches Modell für die Vorhersage der postoperativen Morbidität nach Leberresektion von kolorektalen Lebermetastasen mit hoher Sensitivität und Spezifität unter Nutzung von prä- und intraoperativen Variablen vor.
Key words
Clavin-Dindo classification - prognostic models - risk assessment - prognosis - multivariable ordinal regression modelsSchlüsselwörter
Clavin-Dindo Klassifikation - prognostische Modelle - Risikoabschätzung - multivariable ordinale Regressionsmodelle - PrognosePublication History
Article published online:
22 October 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Chakedis J, Squires MH, Beal EW. et al. Update on current problems in colorectal liver metastasis. Curr Probl Surg 2017; 54: 554-602
- 2 Gong Y, Liu Z, Liao Y. et al. Effectiveness of omega-3 Polyunsaturated Fatty Acids Based Lipid Emulsions for Treatment of Patients after Hepatectomy: A Prospective Clinical Trial. Nutrients 2016; 8: 357
- 3 Gwiasda J, Schrem H, Kaltenborn A. et al. Introduction of the resection severity index as independent risk factor limiting survival after resection of colorectal liver metastases. Surg Oncol 2017; 26: 382-388
- 4 Hayashi K, Yokoyama Y, Nakajima H. et al. Preoperative 6-minute walk distance accurately predicts postoperative complications after operations for hepato-pancreato-biliary cancer. Surgery 2017; 161: 525-532
- 5 Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg 2004; 240: 205-213
- 6 Hoffmann K, Hinz U, Stravodimos C. et al. Risk assessment for liver resection. Surgery 2018; 164: 998-1005
- 7 Gwiasda J, Schulte A, Kaltenborn A. et al. Identification of the resection severity index as a significant independent prognostic factor for early mortality and observed survival > 5 and > 10 years after liver resection for hepatocellular carcinoma. Surg Oncol 2017; 26: 178-187
- 8 Collins GS, Reitsma JB, Altman DG. et al. Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD): the TRIPOD Statement. Br J Surg 2015; 102: 148-158
- 9 Ejaz A, Spolverato G, Kim Y. et al. Impact of blood transfusions and transfusion practices on long-term outcome following hepatopancreaticobiliary surgery. J Gastrointest Surg 2015; 19: 887-896
- 10 Gupta R, Fuks D, Bourdeaux C. et al. Impact of intraoperative blood loss on the short-term outcomes of laparoscopic liver resection. Surg Endosc 2017; 31: 4451-4457
- 11 Jarnagin WR, Gonen M, Fong Y. et al. Improvement in perioperative outcome after hepatic resection: analysis of 1,803 consecutive cases over the past decade. Ann Surg 2002; 236: 397-406
- 12 Margonis GA, Kim Y, Samaha M. et al. Blood loss and outcomes after resection of colorectal liver metastases. J Surg Res 2016; 202: 473-480
- 13 Schiergens TS, Stielow C, Schreiber S. et al. Liver resection in the elderly: significance of comorbidities and blood loss. J Gastrointest Surg 2014; 18: 1161-1170
- 14 Gruttadauria S, Saint Georges Chaumet M, Pagano D. et al. Impact of blood transfusion on early outcome of liver resection for colorectal hepatic metastases. J Surg Oncol 2011; 103: 140-147
- 15 Kooby DA, Stockman J, Ben-Porat L. et al. Influence of transfusions on perioperative and long-term outcome in patients following hepatic resection for colorectal metastases. Ann Surg 2003; 237: 860-869
- 16 Kulik U, Schrem H, Bektas H. et al. Prognostic relevance of hematological profile before resection for colorectal liver metastases. J Surg Res 2016; 206: 498-506
- 17 Lu Q, Lu JW, Wu Z. et al. Perioperative outcome of elderly versus younger patients undergoing major hepatic or pancreatic surgery. Clin Interv Aging 2018; 13: 133-141
- 18 Tee MC, Shubert CR, Ubl DS. et al. Preoperative anemia is associated with increased use of hospital resources in patients undergoing elective hepatectomy. Surgery 2015; 158: 1027-1036
- 19 Kaplan J, Sarnaik S, Gitlin J. et al. Diminished helper/suppressor lymphocyte ratios and natural killer activity in recipients of repeated blood transfusions. Blood 1984; 64: 308-310
- 20 Balzan S, Nagarajan G, Farges O. et al. Safety of liver resections in obese and overweight patients. World J Surg 2010; 34: 2960-2968
- 21 Ulyett S, Shahtahmassebi G, Aroori S. et al. Comparison of risk-scoring systems in the prediction of outcome after liver resection. Perioper Med (Lond) 2017; 6: 22
- 22 Montomoli J, Erichsen R, Christiansen CF. et al. Liver disease and 30-day mortality after colorectal cancer surgery: a Danish population-based cohort study. BMC Gastroenterol 2013; 13: 66
- 23 Lock JF, Westphal T, Rubin T. et al. LiMAx Test Improves Diagnosis of Chemotherapy-Associated Liver Injury Before Resection of Colorectal Liver Metastases. Ann Surg Oncol 2017; 24: 2447-2455
- 24 Chalasani N, Abdelmalek MF, Loomba R. et al. Relationship between three commonly used non-invasive fibrosis biomarkers and improvement in fibrosis stage in patients with NASH. Liver Int 2019; 39: 924-932
- 25 Fujita K, Kuroda N, Morishita A. et al. Fibrosis Staging Using Direct Serum Biomarkers is Influenced by Hepatitis Activity Grading in Hepatitis C Virus Infection. J Clin Med 2018; 7: 267