Tierarztl Prax Ausg G Grosstiere Nutztiere 2020; 48(05): 291-300
DOI: 10.1055/a-1261-6583
Originalartikel

Kortisolkonzentration bei Deutsch-Holstein-Kühen vor, während und nach der Klauenbehandlung im Durchtreibestand – Eignung verschiedener Matrizes

Cortisol concentration before, during and after sham foot trimming in German Holstein cows – the suitability of different matrices
Maria Heinrich
1   Klinik für Klauentiere, Veterinärmedizinische Fakultät der Universität Leipzig, Leipzig
,
Hendrik Müller
1   Klinik für Klauentiere, Veterinärmedizinische Fakultät der Universität Leipzig, Leipzig
,
Helena Fieseler
1   Klinik für Klauentiere, Veterinärmedizinische Fakultät der Universität Leipzig, Leipzig
,
Adrian Steiner
2   Wiederkäuerklinik, Vetsuisse-Fakultät der Universität Bern, Bern, Schweiz
,
Jutta Gottschalk
3   Veterinär-Physiologisch-Chemisches Institut, Veterinärmedizinische Fakultät der Universität Leipzig, Leipzig
,
Almuth Einspanier
3   Veterinär-Physiologisch-Chemisches Institut, Veterinärmedizinische Fakultät der Universität Leipzig, Leipzig
,
Joachim Spilke
4   Institut für Agrar- und Ernährungswissenschaften, Arbeitsgruppe Biometrie und Agrarinformatik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
,
Norbert Mielenz
4   Institut für Agrar- und Ernährungswissenschaften, Arbeitsgruppe Biometrie und Agrarinformatik, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale)
,
Rupert Palme
5   Abteilung für Physiologie, Pathophysiologie und experimentelle Endokrinologie, Veterinärmedizinische Universität Wien, Wien, Österreich
,
Walter Baumgartner
6   Universitätsklinik für Wiederkäuer, Veterinärmedizinische Universität Wien, Wien, Österreich
,
Gerd Möbius
7   Institut für Tierhygiene und Öffentliches Veterinärwesen, Veterinärmedizinische Fakultät der Universität Leipzig, Leipzig
,
Alexander Starke
1   Klinik für Klauentiere, Veterinärmedizinische Fakultät der Universität Leipzig, Leipzig
› Author Affiliations

Zusammenfassung

Ziel Überprüfung, ob sich die Änderung der Kortisolkonzentration im Blut (KoB) von Milchkühen während eines akuten Stressreizes durch die Kortisolkonzentration im Speichel (KoS), in der Tränenflüssigkeit (KoTr) und in der Milch (KoM) und die Kortisolmetabolitenkonzentration im Kot (KoK) nachvollziehen lässt.

Material und Methoden Bei 10 gesunden Deutsch-Holstein-Kühen diente eine simulierte Klauenbehandlung (sKB) im Durchtreibestand als Modell für eine akute Stresssituation. KoB, KoS, KoTr, KoM sowie KoK wurden einmal täglich über 10 Tage gemessen. Bei der an Tag 4 durchgeführten sKB wurden die KoB und KoTr (Minute 0, 15, 25, 30, 40, 50, 60, 80) und die KoK (Minute 480, 540, 600, 660) bestimmt.

Ergebnisse Während der sKB stiegen die KoB und KoTr (Maximum zu Minute 60) und fielen anschließend ab. Nach der sKB kam es zu einem Anstieg der KoK (Maximum zu Minute 660). Während der sKB korrelierten KoB und KoTr sowie KoK und KoTr signifikant und KoK und KoB tendenziell. Im gesamten Verlauf der sKB (Area under the Curve [AUC], Minute 0–80) zeigten KoB und KoTr eine signifikante Korrelation (p = 0,04). Die KoB fiel von Tag 1 zu Tag 4 signifikant ab (p < 0,01). An Tag 5 waren KoB (p = 0,03) und KoK (p < 0,01) signifikant höher. Der Verlauf der KoS und KoTr (Tag 1–10) spiegelte den KoB-Verlauf gut wider. Der Verlauf der KoK wies Parallelen, der von KoM einige Unterschiede zum Verlauf der KoB auf. Deutlich positive Korrelationen ergaben sich für den Zeitraum Tag 1–10 im Vergleich von KoB und KoS (p = 0,002) sowie von KoB und KoTr (p = 0,002).

Schlussfolgerungen und klinische Relevanz Die Gewinnung von Tränenflüssigkeit und Speichel stellt bei der Bestimmung der Kortisolkonzentration eine Alternative zur invasiven Blutentnahme dar. Ein ruhiger Umgang mit den Kühen führt zu einer geringeren Stressreaktion und kann somit das Tierwohl verbessern.

Abstract

Objective The objective of this study was to determine whether changes in cortisol concentration measured in blood serum (KoB) of cows exposed to an acute stressor shows a correlation to cortisol concentrations in saliva (KoS), tears (KoT) and milk (KoM) as well as the concentration of cortisol metabolites in feces (KoK).

Materials and methods In 10 healthy German Holstein cows, sham foot trimming (sKB) including the movement/fixation of the cows through/in a foot trimming chute was used as a model for acute stress. KoB, KoS, KoT, KoM and KoK were measured once a day for 10 days. During sKB, performed on day 4, KoB and KoT were measured at the initiation of foot trimming (minute 0) as well as 15, 25, 30, 40, 50, 60 and 80 minutes later. Additionally, KoK was measured 480, 540, 600 and 660 minutes after the start of sKB.

Results KoB and KoT increased during sKB and reached a maximum at 60 minutes followed by a decrease. KoK increased after sKB and reached a maximum at 660 minutes. There was a significant correlation between KoB and KoT, KoK and KoB and a trend towards a significant correlation between KoK and KoT during sKB. KoB and KoT were significantly correlated (area under the curve, minute 0–10, p = 0.04). KoB decreased significantly from day 1 to day 4 (p < 0.01). On day, 5 KoB (p = 0.03) and KoK (p < 0.01) were significantly higher. KoS and KoT served as good proxies for KoB throughout the study, and KoK and KoB exhibited similar profiles. There were several differences between the profiles of KoM and KoB. During the 10-day measurement period, a significant positive correlation was detected between KoB and KoS (p = 0.002) as well as between KoB and KoT (p = 0.002).

Conclusions and clinical relevance The collection of tear fluid and saliva for determination of cortisol concentrations are non-invasive alternatives to blood sampling. Calm handling of cows may reduce their stress reaction and thus improve animal welfare.

Zusatzmaterial



Publication History

Received: 28 April 2020

Accepted: 02 September 2020

Article published online:
20 October 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Alam MG, Dobson H. Effect of various veterinary procedures on plasma concentrations of cortisol, luteinising hormone and prostaglandin F2 alpha metabolite in the cow. Vet Rec 1986; 118 (01) 7-10
  • 2 Li F, Shah AM, Wang Z. et al. Effects of Land Transport Stress on Variations in Ruminal Microbe Diversity and Immune Functions in Different Breeds of Cattle. Animals (Basel) 2019; 9 (09) 599
  • 3 Hernandez CE, Thierfelder T, Svennersten-Sjaunja K. et al. Time lag between peak concentrations of plasma and salivary cortisol following a stressful procedure in dairy cattle. Acta Vet Scand 2014; 56 (01) 61
  • 4 Mitchell G, Hattingh J, Ganhao M. Stress in cattle assessed after handling, after transport and after slaughter. Vet Rec 1988; 123 (08) 201-205
  • 5 Munksgaard L, Simonsen HB. Behavioral and pituitary adrenal-axis responses of dairy cows to social isolation and deprivation of lying down. J Anim Sci 1996; 74 (04) 769-778
  • 6 Pesenhofer G, Palme R, Pesenhofer RM. et al. Comparison of two methods of fixation during functional claw trimming – walk-in crush versus tilt table – in dairy cows using faecal cortisol metabolite concentrations and daily milk yield as parameters. Wien Tierarztl Mschr 2006; (93) 288-294
  • 7 Rizk A, Herdtweck S, Meyer H. et al. Effects of xylazine hydrochloride on hormonal, metabolic, and cardiorespiratory stress responses to lateral recumbency and claw trimming in dairy cows. J Am Vet Med Assoc 2012; 240 (10) 1223-1230
  • 8 Sixt A, Stanek C, Möstl E. Der Einfluss verschiedener Methoden der Klauenkorrektur auf den Plasmakortisolspiegel bei der Milchkuh. Wien Tierarztl Mschr 1997; 84 (07) 181-188
  • 9 Monk CS, Hart KA, Berghaus RD. et al. Detection of endogenous cortisol in equine tears and blood at rest and after simulated stress. Vet Ophthalmol 2014; 17 (Suppl. 01) 53-60
  • 10 Otovic P, Hutchinson E. Limits to using HPA axis activity as an indication of animal welfare. ALTEX 2015; 32 (01) 41-50
  • 11 Termeulen SB, Butler WR, Natzke RP. Rapidity of cortisol transfer between blood and milk following adrenocorticotropin injection. J Dairy Sci 1981; 64 (11) 2197-2200
  • 12 Mormede P, Andanson S, Auperin B. et al. Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol Behav 2007; 92 (03) 317-339
  • 13 Palme R, Robia C, Messmann S. et al. Measurement of faecal cortisol metabolites in ruminants: a non-invasive parameter of adrenocortical function. Wien Tierarztl Mschr 1999; 86 (07) 237-241
  • 14 Hopster H, van der Werf JT, Erkens JH. et al. Effects of repeated jugular puncture on plasma cortisol concentrations in loose-housed dairy cows. J Anim Sci 1999; 77 (03) 708-714
  • 15 Zalkovic P, MacLean MA, Ambrose DJ. A simple procedure to secure an indwelling jugular vein catheter to the neck of cattle for repeated blood sampling. Can Vet J 2001; 42 (12) 940-942
  • 16 Palme R. Monitoring stress hormone metabolites as a useful, non-invasive tool for welfare assessment in farm animals. Animal Welfare 2012; 21 (03) 331-337
  • 17 Müller H, Heinrich M, Mielenz N. et al. A. Evaluation of arterial digital blood flow using Doppler ultrasonography in healthy dairy cows. BMC Vet Res 2017; 13 (01) 162
  • 18 Müller H, Heinrich M. Mielenz. et al. Evaluation of arterial digital blood flow in dairy cows with claw horn disruption lesions using Doppler ultrasonography. J Dairy Sci 2019; 102 (10) 9213-9223
  • 19 Nechanitzky K, Starke A, Vidondo B. et al. Analysis of behavioral changes in dairy cows associated with claw horn lesions. J Dairy Sci 2016; 99 (04) 2904-2914
  • 20 Dirksen G, Gründer HD, Stöber M. Hrsg. Die klinische Untersuchung des Rindes. 3. Aufl.. Berlin, Hamburg: Enke; 2012
  • 21 Toussaint Raven E. Structure and functions of the Claw (Chapter 1) and Trimming (Chapter 3). In: Toussaint Raven E. ed. Cattle Footcare and Claw Trimming. 1st ed.. Ipswich: Farming Press; 1985: 13-34 75–94
  • 22 Antalovsky A. Technika mistni nitrozilni anestezie na distalnich castech koncetin u skotu (Technik der intravenösen lokalen Schmerzausschaltung im distalen Gliedmaßenbereich beim Rind). Vet Med 1965; 7: 413-420
  • 23 Abraham G, Gottschalk J, Ungemach FR. Evidence for ototopical glucocorticoid-induced decrease in hypothalamic-pituitary-adrenal axis response and liver function. Endocrinology 2005; 146 (07) 3163-3171
  • 24 Palme R, Möstl E. Measurement of cortisol metabolites in faeces of sheep as a parameter of cortisol concentration in blood. Z Säugetierk 1997; 62: 192-197
  • 25 Roy J. SAS for Mixed Models. J Biopharmaceut Statistics 2007; 17 (02) 363-365 doi:10.1080/10543400601001600
  • 26 Maddala GS. Limited-Dependent and Qualitative Variables in Econometrics. New York: Cambridge University Press; 1983
  • 27 Nagelkerke NJD. A Note on a General Definition of the Coefficient of Determination. Biometrika 1991; 78 (03) 691-692 doi:10.1093/biomet/78.3.691
  • 28 Connoly J. Developing Multisite Dynamic Models of Mixed Species Plant Communities. Annals of Botany 2001; 88 (04) 703-712 doi:10.1006/anbo.2001.1481
  • 29 Piepho H-P. Data Transformation in Statistical Analysis of Field Trials with Changing Treatment Variance. Agron J 2009; 101 (04) 865-869 doi:10.2134/agronj2008.0226x
  • 30 Kenward MG, Roger JH. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 1997; 53 (03) 983-997
  • 31 Khraim N. Effects of dexamethasone and training on the hypothalamic-pituitary-adrenal response on mild stress challenge in dairy cows [Dissertation]. Hannover: Tierärztliche Hochschule Hannover; 2011
  • 32 Negrao JA, Porcionato MA, Passille AM de. et al. Cortisol in saliva and plasma of cattle after ACTH administration and milking. J Dairy Sci 2004; 87 (06) 1713-1718
  • 33 Riek A, Schrader L, Zerbe F. et al. Comparison of cortisol concentrations in plasma and saliva in dairy cattle following ACTH stimulation. J Dairy Res 2019; 1-4
  • 34 Thinh NC, Yoshida C, Long ST. et al. Adrenocortical response in cows after intramuscular injection of long-acting adrenocorticotropic hormone (tetracosactide acetate zinc suspension). Reprod Domest Anim 2011; 46 (02) 296-300
  • 35 Verkerk GA, Phipps AM, Carragher JF. et al. Characterization of milk cortisol concentrations as a measure of short-term stress responses in lactating dairy cow. Animal Welfare 1998; (07) 77-86
  • 36 Starke A, Heppelmann M, Beyerbach M. et al. Septic arthritis of the distal interphalangeal joint in cattle: comparison of digital amputation and joint resection by solar approach. Vet Surg 2007; 36 (04) 350-359
  • 37 Palme R, Robia C, Baumgartner W. et al. Transport stress in cattle as reflected by an increase in faecal cortisol metabolite concentrations. Vet Rec 2000; 146 (04) 108-109
  • 38 Palme R. Non-invasive measurement of glucocorticoids: Advances and problems. Physiol Behav 2019; 199: 229-243
  • 39 Schwinn A-C, Knight CH, Bruckmaier RM. et al. Suitability of saliva cortisol as a biomarker for hypothalamic-pituitary-adrenal axis activation assessment, effects of feeding actions, and immunostimulatory challenges in dairy cows. J Anim Sci 2016; 94 (06) 2357-2365
  • 40 Hopster H, Bruckmaier RM, van der Werf JTN. et al. Stress responses during milking; comparing conventional and automatic milking in primiparous dairy cows. J Dairy Sci 2002; 85 (12) 3206-3216
  • 41 Andrade O, Orihuela A, Solano J. et al. Some effects of repeated handling and the use of a mask on stress responses in zebu cattle during restraint. Appl Anim Behav Sci 2001; 71 (03) 175-181
  • 42 Gwazdauskas FC, Paape MJ, McGilliard ML. Milk and plasma glucocorticoid alterations after injections of hydrocortisone and adrenocorticotropin. Proc Soc Exp Biol Med 1977; 154 (04) 543-545
  • 43 Sgorlon S, Fanzago M, Guiatti D. et al. Factors affecting milk cortisol in mid lactating dairy cows. BMC Vet Res 2015; 11: 259