Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(06): 539-544
DOI: 10.1055/a-1277-8669
DOI: 10.1055/a-1277-8669
synpacts
Halonium Catalysis: An Underutilized and Underexplored Catalytic Concept in Olefin Functionalizations
Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health (Award Number R15GM139156). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We thank the University of Toledo for an internal seed grant from the Summer Research Awards and Fellowship Programs.
We dedicate this work to the memory of Professor Kilian Muñiz
Abstract
Iodonium catalysis is described here to accomplish an intermolecular olefin oxyamination reaction. Urea is used as the O- and N-source to add across both activated and unactivated alkenes in a regioselective manner. Mechanistic studies confirm the presence of an iodonium intermediate.
1 Introduction
2 Hypothesis
3 Optimizations and Scope
4 Mechanistic Probes
5 Future Outlook
Key words
iodonium catalysis - olefin oxyamination - regioselective - N-heterocycles - oxazolines - aminooxygenationPublication History
Received: 15 September 2020
Accepted after revision: 02 October 2020
Accepted Manuscript online:
02 October 2020
Article published online:
16 November 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Eric Cheng, Miami University, Oxford, OH, USA. E-Mail: chengeh@miamioh.edu
- 1b Fan Wu, Ningbo University, P. R. of China. E-mail: wufan@nbu.edu.cn.
- 2 Roberts I, Kimball GE. J. Am. Chem. Soc. 1937; 59: 947
- 3a Olah GA, Bollinger JM. J. Am. Chem. Soc. 1967; 89: 4744
- 3b Olah GA, Schilling P, Westerman PW, Lin HC. J. Am. Chem. Soc. 1974; 96: 3581
- 3c Wieringa JH, Strating J, Wyndberg H. Tetrahedron Lett. 1970; 11: 4579
- 3d Brown RS, Nagorski RW, Bennet AJ, McClung RE. D, Aarts GH. M, Klobukowski M, McDonald R, Santarsiero BD. J. Am. Chem. Soc. 1994; 116: 2448
- 3e Mori T, Rathore R, Lindeman SV, Kochi JK. Chem. Commun. 1998; 927
- 3f Nugent WA. J. Org. Chem. 1980; 45: 4533
- 4a Brown RS. J. Acc. Chem. Res. 1997; 30: 131
- 4b Denmark SE, Burk MT, Hoover AJ. J. Am. Chem. Soc. 2010; 132: 1232
- 4c Denmark SE, Kuester WE, Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938
- 5a Cheng YA, Yu WZ, Yeung Y.-Y. Org. Biomol. Chem. 2014; 12: 2333
- 5b Griffin JD, Cavanaugh CL, Nicewicz DA. Angew. Chem. Int. Ed. 2017; 56: 2097
- 5c Denmark SE, Burk MT. Proc. Natl. Acad. Sci. U.S.A. 2010; 107: 20655
- 5d Ashtekar KD, Marzijarani NS, Jaganathan A, Holmes D, Jackson JE, Borhan B. J. Am. Chem. Soc. 2014; 136: 13355
- 6a Tan CK, Yeung Y.-Y. Chem. Commun. 2013; 49: 7985
- 6b Chung W.-J, Vanderwal CD. Angew. Chem. Int. Ed. 2016; 55: 4396
- 6c Chen G, Ma S. Angew. Chem. Int. Ed. 2010; 49: 8306
- 6d Kloeckner U, Finkbeiner P, Nachtsheim BJ. J. Org. Chem. 2013; 78: 2751
- 6e Daniel M, Blanchard F, Nocquet-Thibault S, Cariou K, Dodd RH. J. Org. Chem. 2015; 80: 10624
- 6f Sakakura A, Ukai A, Ishihara K. Nature 2007; 445: 900
- 6g Wang Y.-M, Wu J, Hoong C, Rauniyar V, Toste DF. J. Am. Chem. Soc. 2012; 134: 12928
- 6h Wang Q, Jiang B, Yu L.-Z, Wei Y, Shi M. Org. Chem. Front. 2017; 4: 1294
- 7 Muñiz K, Martínez C. J. Org. Chem. 2013; 78: 2168
- 8a Chávez P, Kirsch J, Hövelmann CH, Streuff J, Martinez-Belmonte M, Escudero-Adán EC, Martin E, Muñiz K. Chem. Sci. 2012; 3: 2375
- 8b Jeong JU, Tao B, Sagasser I, Henniges H, Sharpless KB. J. Am. Chem. Soc. 1998; 120: 6844
- 8c Müller CH, Fröhlich R, Daniliuc CG, Hennecke U. Org. Lett. 2012; 14: 5944
- 8d Zhang J, Zhang G, Wu W, Zhang X, Shi M. Chem. Commun. 2014; 50: 15052
- 8e Zhang J, Zhang X, Wu W, Zhang G, Xu S, Shi M. Tetrahedron Lett. 2015; 56: 1505
- 8f Li J, Jiao J, Zhang C, Shi M, Zhang J. Chem. Asian J. 2016; 11: 1361
- 9a Yoshimura A, Middleton KR, Zhu C, Nemykin VN, Zhdankin VV. Angew. Chem. Int. Ed. 2012; 51: 8059
- 9b Yoshimura A, Jones TN, Yusubov MS, Zhdankin VV. Adv. Synth. Catal. 2014; 356: 3336
- 10a Donohoe TJ, Callens CK. A, Flores A, Lacy AR, Rathi AH. Chem. Eur. J. 2011; 17: 58
- 10b Derosa J, Tran VT, van der Puyl VA, Engle KM. Aldrichimica Acta 2018; 51: 21
- 10c Kaur N, Wu F, Alom N.-E, Ariyarathna JP, Saluga SJ, Li W. Org. Biomol. Chem. 2019; 17: 1643
- 10d Sardini SR, Lambright AL, Trammel GL, Omer HM, Liu P, Brown KM. J. Am. Chem. Soc. 2019; 141: 9391
- 10e Derosa J, Kleinmans R, Tran VT, Karunananda MK, Wisniewski SR, Eastgate MD, Engle KM. J. Am. Chem. Soc. 2018; 140: 17878
- 10f Shekhar KC, Dhungana RK, Shrestha B, Thapa S, Khanal N, Basnet P, Lebrun RW, Giri R. J. Am. Chem. Soc. 2018; 140: 9801
- 10g Garlets ZJ, White DR, Wolfe JP. Asian J. Org. Chem. 2017; 6: 636
- 10h Nguyen TT, Grigorjeva L, Daugulis O. Angew. Chem. Int. Ed. 2018; 57: 1688
- 10i Nakafuku KM, Fosu SC, Nagib DA. J. Am. Chem. Soc. 2018; 140: 11202
- 10j Muñiz K, Barreiro L, Romero RM, Martinez C. J. Am. Chem. Soc. 2017; 139: 4354
- 10k Bornowski EC, Hinds EM, White DR, Nakamura Y, Wolfe JP. Org. Process Res. Dev. 2019; 23: 1610
- 11 Bergmeier SC. Tetrahedron 2000; 56: 2561
- 12 Li G, Chang H.-T, Sharpless KB. Angew. Chem., Int. Ed. Engl. 1996; 35: 451
- 13a Donohoe TJ, Churchill GH, Wheelhouse KM. P, Glossop PA. Angew. Chem. Int. Ed. 2006; 45: 8025
- 13b Beaumont S, Pons V, Retailleau P, Dodd RH, Dauban P. Angew. Chem. Int. Ed. 2010; 49: 1634
- 13c Dequirez G, Ciesielski J, Retailleau P, Dauban P. Chem. Eur. J. 2014; 20: 8929
- 14a Alexanian EJ, Lee C, Sorensen EJ. J. Am. Chem. Soc. 2005; 127: 7690
- 14b Desai LV, Sanford MS. Angew. Chem. Int. Ed. 2007; 46: 5737
- 14c Qi X, Chen C, Hou C, Fu L, Chen P, Liu G. J. Am. Chem. Soc. 2018; 140: 7415
- 14d Leathen ML, Rosen BR, Wolfe JP. J. Org. Chem. 2009; 74: 5107
- 14e Chemler SR, Karyakarte SD, Khoder ZM. J. Org. Chem. 2017; 82: 11311
- 14f Noack M, Göttlich R. Chem. Commun. 2002; 536
- 14g Fuller PH, Kim JW, Chemler SR. J. Am. Chem. Soc. 2008; 130: 17638
- 14h Paderes MC, Chemler SR. Org. Lett. 2009; 11: 1915
- 14i Karyakarte SD, Smith TP, Chemler SR. J. Org. Chem. 2012; 77: 7755
- 14j Sequeira FC, Chemler SR. Org. Lett. 2012; 14: 4482
- 14k Zhu R, Buchwald SL. J. Am. Chem. Soc. 2015; 137: 8069
- 14l Liu R.-H, Wei D, Han B, Yu W. ACS Catal. 2016; 6: 6525
- 14m Hemric BN, Wang Q. Beilstein J. Org. Chem. 2016; 12: 22
- 14n Xie J, Wang Y.-W, Qi L.-W, Zhang B. J. Org. Chem. 2019; 84: 1468
- 14o Hemric BN, Chen AW, Wang Q. J. Org. Chem. 2019; 84: 1468
- 14p Lei H, Conway JH. Jr, Cook CC, Rovis T. J. Am. Chem. Soc. 2019; 141: 11864
- 14q Muñiz K, Iglesias A, Fang YW. Chem. Commun. 2009; 5591
- 14r Padwa A, Flick AC, Leverett CA, Stengel T. J. Org. Chem. 2004; 69: 6377
- 14s De Horo T, Nevado C. Angew. Chem. Int. Ed. 2011; 50: 906
- 14t Li H, Widenhoefer RA. Tetrahedron. 2010; 66: 4827
- 14u Schmidt VA, Alexanian EJ. J. Am. Chem. Soc. 2011; 133: 11402
- 14v Xu HC, Moeller KD. J. Am. Chem. Soc. 2008; 130: 13542
- 14w Farid U, Wirth T. Angew. Chem. Int. Ed. 2012; 51: 3462
- 14x Danneman MW, Hong KB, Johnston JN. Org. Lett. 2015; 17: 3806
- 15a Williamson KS, Yoon TP. J. Am. Chem. Soc. 2010; 132: 4570
- 15b Michaelis DJ, Shaffer CJ, Yoon TP. J. Am. Chem. Soc. 2007; 129: 1866
- 15c Michaelis DJ, Ischay MA, Yoon TP. J. Am. Chem. Soc. 2008; 130: 6610
- 15d Benkovics T, Du J, Guzei IA, Yoon TP. J. Org. Chem. 2009; 74: 5545
- 15e Liu GS, Zhang YQ, Yuan YA, Xu H. J. Am. Chem. Soc. 2013; 135: 3343
- 15f Lu D.-F, Zhu C.-L, Jia Z.-X, Xu H. J. Am. Chem. Soc. 2014; 136: 13186
- 15g Liu G, Stahl SS. J. Am. Chem. Soc. 2006; 128: 7179
- 16a Liu Z, Gao Y, Zeng T, Engle KM. Isr. J. Chem. 2019; 60: 219
- 16b Giri R, Shekhar KC. J. Org. Chem. 2018; 83: 3013
- 16c Li W, Boon JK, Zhao Y. Chem. Sci. 2018; 9: 600
- 16d Liu Z, Li X, Zeng T, Engle KM. ACS Catal. 2019; 9: 3260
- 16e Shrestha B, Basnet P, Dhungana RK, Shekhar KC, Thapa S, Sears JM, Giri R. J. Am. Chem. Soc. 2017; 139: 10653
- 17 Wu F, Alom N.-E, Ariyarathna JP, Naß J, Li W. Angew. Chem. Int. Ed. 2019; 58: 11676
- 18 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 19a Powner MW, Gerland B, Sutherland JD. Nature. 2009; 459: 239
- 19b Epstein O, Bryan MC, Cheng AC, Derakhchan K, Dineen TA, Hickman D, Hua Z, Human JB, Kreiman C, Marx IE, Weiss MM, Wahl RC, Wen PH, Whittington DA, Wood S, Zheng XM, Fremeau RT. Jr, White RD, Patel VF. J. Med. Chem. 2014; 57: 9796
- 19c Griffith DA, Danishefsky SJ. J. Am. Chem. Soc. 1991; 113: 5863
- 20a Alom N.-E, Kaur N, Wu F, Saluga SJ, Li W. Chem. Eur. J. 2019; 25: 6902
- 20b Alom N.-E, Wu F, Li W. Org. Lett. 2017; 19: 930
- 20c Alom N.-E, Rina YA, Li W. Org. Lett. 2017; 19: 6204
- 20d Wu F, Ariyarathna JP, Kaur N, Alom N.-E, Kennell ML, Bassiouni OH, Li W. Org. Lett. 2020; 22: 2135
- 21 The difficulty of such an intramolecular process has been well documented in ref. 7. For an intriguing recent example, see: Tao Z, Gilbert BB, Denmark SE. J. Am. Chem. Soc. 2019; 141: 19161
- 22 Li X, Chen P, Liu G. Beilstein J. Org. Chem. 2018; 14: 1813
- 23a Ueda S, Terauchi H, Yano A, Ido M, Matsumoto M, Kawasaki M. Bioorg. Med. Chem. Lett. 2004; 14: 313
- 23b Gratia SS, Vigneau ES, Eltayeb S, Patel K, Meyerhoefer TJ, Kershaw S, Huang V, De Castro MA. Tetrahedron Lett. 2014; 55: 448
- 23c Minakata S, Morino Y, Ide T, Oderaotoshi Y, Komatsu M. Chem. Commun. 2007; 3279
- 23d Huang H, Yang W, Chen Z, Lai Z, Sun J. Chem. Sci. 2019; 10: 9586
- 23e Yamamoto K, Tsuda Y, Kuriyama M, Demizu Y, Onomura O. Chem. Asian J. 2020; 15: 840
- 24a Wu F, Stewart S, Ariyarathna JP, Li W. ACS Catal. 2018; 8: 1921
- 24b Ariyarathna JP, Wu F, Colombo SK, Hillary CM, Li W. Org. Lett. 2018; 20: 6462
- 24c Wu F, Ariyarathna JP, Alom N.-E, Kaur N, Li W. Org. Lett. 2020; 22: 884
- 25 For an informative perspective on the challenges of regiodivergent couplings, see: Jackson EP, Malik HA, Sormunen GJ, Baxter RD, Liu P, Wang H, Shareef A.-R, Montgomery J. Acc. Chem. Res. 2015; 48: 1736
- 26a Malik HA, Sormunen GJ, Montgomery J. J. Am. Chem. Soc. 2010; 132: 6304
- 26b Miller ZD, Li W, Belderrain TR, Montgomery J. J. Am. Chem. Soc. 2013; 135: 15282
- 26c Sardini SR, Brown KM. J. Am. Chem. Soc. 2017; 139: 9823
- 26d Sakae R, Hirano K, Miura M. J. Am. Chem. Soc. 2015; 137: 6460
- 26e Itoh T, Matsueda T, Shimizu Y, Kanai M. Chem. Eur. J. 2015; 21: 15955
- 26f Su W, Gong T.-J, Lu X, Xu M.-Y, Yu C.-G, Xu Z.-Y, Yu H.-Z, Xiao B, Fu Y. Angew. Chem. Int. Ed. 2015; 54: 12957
Current addresses:
For a selected recent review, see:
For selected recent examples, see:
For selected reviews on halofunctionalization and halogenation, see:
For selected examples on halocyclization processes, see:
A very interesting early example using bromine catalysis was also demonstrated by Sharpless, see:
For selected stoichiometric examples, see:
For selected reviews on olefin difunctionalizations, see:
For selected recent examples on olefin difunctionalizations, see:
For selected examples of osmium-catalyzed strategies, see:
For selected intramolecular examples based on palladium-catalysis, see:
For selected recent reviews and examples based on copper catalysis, see:
For a selected example of Ir-catalyzed strategies, see:
For selected examples based on other metal-catalyzed strategies, see:
For selected examples of metal-free strategies, see:
For selected examples of intermolecular alkene oxyamination strategies, see:
For selected reviews and examples of using directing groups in alkene difunctionalizations, see:
For other selected synthetic examples for this class of heterocycles, see:
For selected examples of regiodivergent couplings, see: