Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000083.xml
Synlett 2021; 32(16): 1621-1624
DOI: 10.1055/a-1282-9731
DOI: 10.1055/a-1282-9731
cluster
Modern Nickel-Catalyzed Reactions
Nickel-Catalyzed α-1,3-Dienylation of 1,3-Dicarbonyl Compounds with Propargylic Carbonates
This work was supported by the Japan Society for the Promotion of Science [JSPS KAKENHI, Grant Numbers 15H05756 (M.M.), 18H04648 (Hybrid Catalysis, N.I.), and 20H04810 (Hybrid Catalysis, N.I.)].

Abstract
Herein reported is a nickel-catalyzed α-1,3-dienylation reaction of 1,3-dicarbonyl compounds with substituted propargylic (e.g., but-2-ynyl) carbonates. The propargyl unit changes into a 1,3-dienyl unit, which is incorporated at the α-position of the 1,3-dicarbonyl compounds.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1282-9731.
- Supporting Information
Publication History
Received: 15 September 2020
Accepted after revision: 05 October 2020
Accepted Manuscript online:
05 October 2020
Article published online:
02 November 2020
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a The Chemistry of Dienes and Polyenes, Vol. 1. Rappoport Z. Wiley; Chichester: 1997
- 1b The Chemistry of Dienes and Polyenes, Vol. 2. Rappoport Z. Wiley; Chichester: 2000
- 1c Corey EJ. Angew. Chem. Int. Ed. 2002; 41: 1650
- 1d Nicolaou KC, Snyder SA, Montagnon T, Vassilikogiannakis G. Angew. Chem. Int. Ed. 2002; 41: 1668
- 1e Xiong Y, Sun Y, Zhang G. Tetrahedron Lett. 2018; 59: 347
- 1f Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
- 2 Locascio TM, Tunge JA. Chem. Eur. J. 2016; 22: 18140
- 3 Ishida N, Hori Y, Okumura S, Murakami M. J. Am. Chem. Soc. 2019; 141: 84
- 4 O’Broin CQ, Guiry PJ. Org. Lett. 2020; 22: 879
- 5a Fournier-Nguefack C, Lhoste P, Sinou D. Synlett 1996; 553
- 5b Kozawa Y, Mori M. J. Org. Chem. 2003; 68: 8068
- 5c Ambrogio I, Cacchi S, Fabrizi G, Prastaro A. Tetrahedron 2009; 65: 8916
- 5d Nemoto T, Zhao Z, Yokosaka T, Suzuki Y, Wu R, Hamada Y. Angew. Chem. Int. Ed. 2013; 52: 2217
- 5e Daniels DS. B, Jones AS, Thompson AL, Paton R, Anderson A. Angew. Chem. Int. Ed. 2014; 53: 1915
- 5f Ogiwara Y, Sato K, Sakai N. Org. Lett. 2017; 19: 5296
- 6a Tsuji J, Mandai T. Angew. Chem. Int. Ed. 1996; 34: 2589
- 6b Ma S. Eur. J. Org. Chem. 2004; 1175
- 6c Guo L.-N, Duan X.-H, Liang Y.-M. Acc. Chem. Res. 2011; 44: 111
- 6d Yoshida M. Heterocycles 2013; 87: 1835
- 6e Franckevičius V. Tetrahedron Lett. 2016; 57: 3586
- 6f Roy R, Saha S. RSC Adv. 2018; 8: 31129
- 6g O’Broin CQ, Guiry P. J. Org. Chem. 2020; 85: 10321
- 7a Behenna DC, Mohr JT, Sherden NH, Marinescu SC, Harned AM, Tani K, Seto M, Ma S, Novák Z, Krout MR, McFadden RM, Roizen JL, Enquist JA, White DE, Levine SR, Petrova KV, Iwashita A, Virgil SC, Stoltz BM. Chem. Eur. J. 2011; 17: 14199
- 7b Ambrogio I, Cacchi S, Fabrizi G, Goggiamani A, Lazzetti A. Eur. J. Org. Chem. 2015; 3147
- 7c Oelke AJ, Sun J, Fu GC. J. Am. Chem. Soc. 2012; 134: 2966
- 7d Watanabe K, Miyazaki Y, Okubo M, Zhou B, Tsuji H, Kawatsura M. Org. Lett. 2018; 20: 5448
- 7e Tang S, Wei W, Yin D, Poznik M, Chruma JJ. Eur. J. Org. Chem. 2019; 3964
- 7f O’Broin CQ, Guiry PJ. Org. Lett. 2019; 21: 5402
- 8a Jeffery-Luong T, Linstrumelle G. Tetrahedron Lett. 1980; 21: 5019
- 8b Ruitenberg K, Kleijn H, Elsevier CJ, Meijer J, Vermeer P. Tetrahedron Lett. 1981; 22: 1451
- 8c Keinan E, Bosch E. J. Org. Chem. 1986; 51: 4006
- 8d Moriya T, Miyaura N, Suzuki A. Synlett 1994; 149
- 8e Kimura M, Wakamiya Y, Horino Y, Tamaru Y. Tetrahedron Lett. 1997; 38: 3963
- 8f Kalek M, Jahansson T, Jezowska M, Stawinski J. Org. Lett. 2010; 12: 4702
- 8g Molander GA, Sommers EM, Baker SR. J. Org. Chem. 2006; 71: 1563
- 8h Yoshida M, Ohno S, Namba K. Angew. Chem. Int. Ed. 2013; 52: 13597
- 8i Smith MK, Tunge JA. Org. Lett. 2017; 19: 5497
- 8j Wang H, Luo H, Zhang Z, Zheng W.-F, Yin Y, Qian H, Zhang J, Ma S. J. Am. Chem. Soc. 2020; 142: 9763
- 9a Tsuji J, Watanabe H, Minami I, Shimizu I. J. Am. Chem. Soc. 1985; 107: 2196
- 9b Yoshida M, Fujita M, Ishii T, Ihara M. J. Am. Chem. Soc. 2003; 125: 4874
- 9c Labrosse J.-R, Lhoste P, Delbecq F, Sinou D. Eur. J. Org. Chem. 2003; 2813
- 9d Ambrogio I, Cacchi S, Fabrizi G. Org. Lett. 2006; 8: 2083
- 9e Guo L.-N, Duan X.-H, Bi H.-P, Liu X.-Y, Liang Y.-M. J. Org. Chem. 2007; 72: 1538
- 9f Inuki S, Yoshimitsu Y, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2010; 75: 3831
- 9g Nishioka N, Koizumi T. J. Polym. Sci., Part A: Polym. Chem. 2011; 49: 642
- 9h Schröder SP, Taylor NJ, Jackson P, Franckevičius V. Org. Lett. 2013; 15: 3778
- 9i Nibbs AE, Montgomery TD, Zhu Y, Rawal VH. J. Org. Chem. 2015; 80: 4928
- 9j Wu T, Chen M, Yang Y. J. Org. Chem. 2017; 82: 11304
- 9k Kawase A, Omura H, Doi T, Tsukamoto H. Chem. Lett. 2019; 48: 1402
- 9l Ding L, Gao RD, You S.-L. Chem. Eur. J. 2019; 25: 4330
- 10a Gotzig J, Otto H, Werner H. J. Organomet. Chem. 1985; 287: 247
- 10b Jia G, Rheingold AL, Meek DW. Organometallics 1989; 8: 1378
- 10c Wakatsuki Y, Yamazaki H, Maruyama Y, Shimizu I. J. Chem. Soc., Chem. Commun. 1991; 261
- 10d Krivykh VV, Taits ES, Petrovskii PV, Struchkov YT, Yanovskii AI. Mendeleev Commun. 1991; 1: 103
- 10e Huang T.-M, Chen J.-T, Lee G.-H, Wang YA. J. Am. Chem. Soc. 1993; 115: 1170
- 10f Blosser PW, Gallucci JC, Wojcicki A. J. Am. Chem. Soc. 1993; 115: 2994
- 10g Stang PJ, Crittell CM, Arif AM. Organometallics 1993; 12: 4799
- 10h Casey CP, Nash JR, Yi CS, Selmeczy AD, Chung S, Powell DR, Hayashi RK. J. Am. Chem. Soc. 1998; 120: 722
- 10i Cheng Y.-C, Chen Y.-K, Huang T.-M, Yu C.-I, Lee G.-H, Wang Y, Chen J.-T. Organometallics 1998; 17: 2953
- 10j Norambuena VF. Q, Heeres A, Heeres HJ, Meetsma A, Teuben JH, Hessen B. Organometallics 2008; 27: 5672
- 10k Nagae H, Kundu A, Tsurugi H, Mashima K. Organometallics 2017; 36: 3061
- 11a Chen J.-T. Coord. Chem. Rev. 1999; 190-192: 1143
- 11b Su C.-C, Chen J.-T, Lee G.-H, Wang Y. J. Am. Chem. Soc. 1994; 116: 4999
- 11c Tsai F.-Y, Hsu R.-H, Huang T.-M, Chen J.-T, Lee G.-H, Wang Y. J. Organomet. Chem. 1996; 520: 85
- 12 For the formation of π-allylmetals from π-propargylmetals, see ref. 10h,i and 11.
- 13 For a relevant deprotonation reaction of a π-allylpalladium species, see: Takacs JM, Lawson EC, Clement F. J. Am. Chem. Soc. 1997; 119: 5956
- 14 α-Dienylation of Malonate 1 with 2: Typical Procedure Ni(cod)2 (5.5 mg, 0.020 mmol, 5 mol%) and ligand 5 (15.6 mg, 0.030 mmol, 8 mol%) were placed in a vial. Acetonitrile (2 mL) was added, and the mixture was stirred at room temperature for 5 min. Then, malonate 1 (69.7 mg, 0.40 mmol) and propargyl carbonate 2 (88.5 mg, 0.52 mmol, 1.3 equiv) were added to the mixture, which was stirred at 80 °C for 24 h. After cooled to room temperature, the reaction mixture was passed through a pad of silica gel, which was eluted with ethyl acetate. The filtrate was evaporated to dryness under reduced pressure. The residue was purified by preparative thin-layer chromatography (PTLC; eluent: hexane/ethyl acetate = 10:1) to give a colorless oil (80.4 mg), which was estimated by 1H NMR spectroscopy to contain 3 (0.33 mmol, 81%) and 4 (0.029 mmol, 7%). 1H NMR (400 MHz, CDCl3): δ = 1.26 (t, J = 7.0 Hz, 6 H), 1.63 (s, 3 H), 4.22 (q, J = 7.2 Hz, 4 H), 5.02 (s, 1 H), 5.09 (d, J = 10.8 Hz, 1 H), 5.38 (d, J = 17.2 Hz, 1 H), 5.42 (s, 1 H), 6.31 (dd, J = 17.2, 11.2 Hz, 1 H). 13C NMR (101 MHz, CDCl3): δ = 14.1, 21.2, 58.9, 61.7, 114.1, 115.8, 136.2, 145.2, 171.1. HRMS (APCI+): m/z calcd for C12H19O4 [M + H]+: 227.1283; found: 227.1279. IR (ATR): 2983, 1728, 1248, 1219, 1101, 1018 cm–1.
For palladium-catalyzed intramolecular reactions, see:
Reviews on transition-metal-catalyzed reactions of propargylic electrophiles:
Selected examples:
Selected examples:
Selected examples:
Selected examples of π-propargyl complexes:
For the central attack by nucleophile, see: