Erfahrungsheilkunde 2020; 69(06): 334-339
DOI: 10.1055/a-1300-8702
Wissen

Vitamin A (Retinol): Stiefkind der Ernährungsmedizin

Uwe Gröber

Zusammenfassung

Wer kennt es nicht, das Bild der Karotte – symbolisch für die wichtige Vitamin-A-Zufuhr. Vitamin A spielt vor allem bei der Entwicklung des Gehirns und der Sehfähigkeit eine zentrale Rolle. Leider existiert auch in der heutigen Zeit immer noch das Problem, dass die Empfehlungen für eine bedarfsgerechte Vitamin-A-Zufuhr über die Ernährung nicht erreicht werden – mindestens 25 % der Bevölkerung leiden unter Vitamin-A-Mangel. Zu den Risikogruppen gehören insbesondere Kleinkinder, Schwangere und Stillende. Der Mangel kann zu erheblichen Beeinträchtigungen und Erkrankungen führen. Mittlerweile zeigen aktuelle Daten, dass die Bildung von Vitamin A aus Carotinoiden jedoch überschätzt wurde, d. h. die Fachgesellschaften sollten ihre Empfehlungen anpassen. Des Weiteren geht der Beitrag auf Vitamin A als Behandlungsoption bei COVID-19 ein.

Abstract

Vitamin A (retinol) is the most important vitamin for the mucosal immunity of the respiratory tract, the gastrointestinal tract, and the urogenital tract. National Surveys on vitamin A (retinol) intake for Germany indicate that at least 25 % of the population do not achieve the recommended daily requirement in their diet. The percentage may even be higher, as the previous nutritional surveys (e. g. NVS) used a conversion factor of 6:1 (6 mg beta carotene = 1 mg retinol) to calculate the vitamin A activity from the beta carotene (provitamin A) intake. A more realistic conversion factor seems to be 36:1 (36 mg beta carotene = 1 mg retinol). In gene transcription, the receptors for vitamin D (VDR) and vitamin A (RXR) merge, so that the actual effect of 1,25(OH)2D often occurs in combination with retinoic acid (RA) (e. g. adaptive immunity). Risk groups for an inadequate intake of vitamin A include elderly people, young children, pregnant women, breast-feeding mothers, and patients, as all these groups have increased requirements.



Publication History

Article published online:
03 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Guo Y, Brown C, Ortiz C. et al. Leukocyte homing, fate, and function are controlled by retinoic acid. Physiol Rev 2015; 95 (01) 125-148
  • 2 Sandell LL, Sanderson BW, Moiseyev G. et al. RDH10 is essential for synthesis of embryonic retinoic acid and is required for limb, craniofacial, and organ development. Genes Dev 2007; 21 (09) 1113-1124
  • 3 Dollé P, Ruberte E, Kastner P. et al. Differential expression of genes encoding alpha, beta and gamma retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature 1989; 342 (6250): 702-705
  • 4 WHO. Global prevalence of vitamin A deficiency in populations at risk 1995–2005. WHO Global Database on Vitamin A Deficiency. Genf: 2009
  • 5 Mayo-Wilson E, Imdad A, Herzer K. et al. Vitamin A supplements for preventing mortality, illness, and blindness in children aged under 5: Systematic review and meta-analysis. BMJ 2011; 343: d5094
  • 6 Hou N, Ren L, Gong M. et al. Vitamin A deficiency impairs spatial learning and memory: The mechanism of abnormal CBP-dependent histone acetylation regulated by retinoic acid receptor alpha. Mol Neurobiol 2015; 51 (02) 633-647
  • 7 Rothman KJ, Moore LL, Singer MR. et al. Teratogenicity of high vitamin A intake. N Eng J Med 1995; 333 (21) 1369-1373
  • 8 DGE, ÖGE, SGE, SVE. Hrsg. Referenzwerte für die Nährstoffzufuhr. 2. Aufl., 4. akt. Ausgabe. Neustadt: Neuer Umschau Buchverlag; 2018
  • 9 De Urquiza AM, Liu S, Sjöberg M. et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science 2000; 290 (5499): 2140-2144
  • 10 Lengqvist J, Mata De Urquiza A, Bergman AC. et al. Polyunsaturated fatty acids including docosahexaenoic and arachidonic acid bind to the retinoid X receptor alpha ligand-binding domain. Mol Cell Proteomics 2004; 3 (07) 692-703
  • 11 Gröber U. Mikronährstoffe: Metabolic Tuning – Prävention – Therapie. 3. Aufl.. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2011
  • 12 Lietz G, Oxley A, Leung W. et al. Single nucleotide polymorphisms upstream from the β-carotene 15,15’-monoxygenase gene influence provitamin A conversion efficiency in female volunteers. J Nutr 2012; 142 (01) 161-165
  • 13 Tang G. Bioconversion of dietary provitamin A carotenoids to vitamin A in humans. Am J Clin Nutr 2010; 91 (05) 1468-1473
  • 14 Maden M. Retinoic acid in the development, regeneration and maintenance of the nervous system. Nat Rev Neurosci 2007; 8 (10) 755-765
  • 15 Fragoso YD, Shearer KD, Sementilli A. et al. High expression of retinoic acid receptors and synthetic enzymes in the human hippocampus. Brain Struct Funct 2012; 217 (02) 473-483
  • 16 Bonhomme D, Pallet V, Dominguez G. et al. Retinoic acid modulates intrahippocampal levels of corticosterone in middle-aged mice: Consequences on hippocampal plasticity and contextual memory. Front Aging Neurosci 2014; 6: 6
  • 17 Touyarot K, Bonhomme D, Roux P. et al. A mid-life vitamin A supplementation prevents age-related spatial memory deficits and hippocampal neurogenesis alterations through CRABP-I. PLoS One 2013; 8 (08) e72101
  • 18 Velhoen M, Brucklacher-Waldert V. Dietary influences on intestinal immunity. Nat Rev Immun 2012; 12 (10) 696-708
  • 19 Iwata M, Hirakiyama A, Eshima Y. et al. Retinoic acid imprints gut-homing specificity on T cells. Immunity 2004; 21 (04) 527-538
  • 20 Iwata M, Eshima Y, Kagechika H. Retinoic acids exert direct effects on T cells to suppress Th1 development and enhance Th2 development via retinoic acid receptors. Int Immunol 2003; 15 (08) 1017-1025
  • 21 Takeuchi H, Yokota A, Ohoka Y. et al. Efficient induction of CCR9 on T cells requires coactivation of retinoic acid receptors and retinoid X receptors (RXRs): Exaggerated T Cell homing to the intestine by RXR activation with organotins. J Immunol 2010; 185 (09) 5289-5299
  • 22 Mucida D, Park Y, Kim G. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317 (5835): 256-260
  • 23 Mora JR, Iwata M, von Andrian UH. Vitamin effects on the immune system: Vitamins A and D take centre stage. Nat Rev Immunol 2008; 8 (09) 685-698
  • 24 Kang SG, Lim HW, Andrisani OM. et al. Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J Immunol 2007; 179 (06) 3724-3733
  • 25 Rampal R, Awasthi A, Ahuja V. Retinoic acid-primed human dendritic cells inhibit Th9 cells and induce Th1/Th17 cell differentiation. J Leukoc Biol 2016; 100 (01) 111-120
  • 26 Xiao S, Jin H, Korn T. et al. Retinoic acid increases Foxp3+ regulatory T cells and inhibits development of Th17 cells by enhancing TGF-beta-driven Smad3 signaling and inhibiting IL-6 and IL-23 receptor expression. J Immunol 2008; 181 (04) 2277-2284
  • 27 Mucida D, Park Y, Kim G. et al. Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 2007; 317 (5835): 256-260
  • 28 Abdolahi M, Yavari P, Honarvar NM. et al. Molecular Mechanisms of the Action of Vitamin A in Th17/Treg Axis in Multiple Sclerosis. J Mol Neurosci 2015; 57 (04) 605-613
  • 29 Fragoso YD, Stoney PN, McCaffery PJ. The evidence for a beneficial role of vitamin A in multiple sclerosis. CNS Drugs 2014; 28 (04) 291-299
  • 30 Reza Dorosty-Motlagh A, Mohammadzadeh Honarvar N, Sedighiyan M. et al. The Molecular Mechanisms of Vitamin A Deficiency in Multiple Sclerosis. J Mol Neurosci 2016; 60 (01) 82-90
  • 31 Gröber U, Holick MF. Corona, Influenza & Co.. 2. Aufl.. Stuttgart: Wissenschaftliche Verlagsgesellschaft; 2020