Nuklearmedizin 2021; 60(02): 90-98
DOI: 10.1055/a-1308-0589
Original Article

Characterization of activation induced [18]F-FDG uptake in Dendritic Cells

Charakterisierung der aktivierungsinduzierten [18]F-FDG-Aufnahme in dendritische Zellen
Stefanie Pektor
1   Department of Nuclear Medicine, University Medical Center Mainz, Germany
,
Laura Lawaczeck
1   Department of Nuclear Medicine, University Medical Center Mainz, Germany
,
Stephan Tenzer
2   Institute for Immunology, University Medical Center Mainz, Germany
,
Nicole Bausbacher
1   Department of Nuclear Medicine, University Medical Center Mainz, Germany
,
Manuela Andrea Hoffmann
1   Department of Nuclear Medicine, University Medical Center Mainz, Germany
3   Federal Ministry of Defense, Department of Occupational Health & Safety, Bonn, Germany
,
Mathias Schreckenberger
1   Department of Nuclear Medicine, University Medical Center Mainz, Germany
,
Matthias Miederer
1   Department of Nuclear Medicine, University Medical Center Mainz, Germany
› Author Affiliations

Abstract

Aim Activation of immune cells leads to enhanced glucose uptake that can be visualized by [18]F-Fluorodeoxyglucose ([18]F-FDG) positron emission tomography/computed tomography (PET/CT). Dendritic cells (DC) are essential for the function of the adaptive immune system. In contrast to other immune cells metabolic changes leading to an increase of [18]F-FDG uptake are poorly investigated. Here, we analysed the impact of different DC activation pathways on their [18]F-FDG uptake. This effect was then used to radiolabel DC with [18]F-FDG and track their migration in vivo.

Methods DC were generated from bone marrow progenitors (BMDC) or isolated from spleens (SPDC) of C57BL/6 mice. After stimulation with the TLR ligands LPS and CpG or anti-CD40 antibody for up to 72 hours activation markers and glucose transporters (GLUTs) were measured by flow cytometry. Uptake of [18]F-FDG was measured by gamma-counting. DC lysates were analysed for expression of glycolysis relevant proteins by mass spectrometry (MS). [18]F-FDG-labeled DC were injected into footpads of mice to image DC migration.

Results BMDC and SPDC showed strong upregulation of activation markers predominantly 24 hours after TLR stimulation followed by higher uptake of [18]F-FDG. In line with this, the expression of GLUTs was upregulated during the course of activation. Furthermore, MS analyses of DC lysates revealed differential regulation of glycolysis relevant proteins according to the stimulatory pathway. As a proof of principle, DC were labeled with [18]F-FDG upon activation to follow their migration in vivo via PET/MRI.

Conclusion Immune stimulation of DC leads to enhanced [18]F-FDG uptake into DC, representing the typical shift to aerobic glycolysis in immune cells after activation.

Zusammenfassung

Ziel Aktivierung von Immunzellen führt zu einer erhöhten Zuckeraufnahme, die durch [18]F-FDG-PET/CT dargestellt werden kann. Dendritische Zellen (DC) sind essentiell für die Funktion des adaptiven Immunsystems. Im Gegensatz zu anderen Immunzellen sind metabolische Veränderungen, die zu einer Erhöhung der [18]F-FDG Aufnahme führen nur wenig untersucht. In dieser Studie wurde der Einfluss verschiedener DC-Aktivierungswege auf ihre [18]F-FDG Aufnahme untersucht. Dieser Effekt wurde dann genutzt, um DC mit [18]F-FDG zu markieren und ihre Migration in vivo zu verfolgen.

Methoden DC wurden entweder aus Knochenmarksvorläufern generiert (BMDC) oder aus Milzen von C57BL/6 Mäusen isoliert (SPDC). NAch Stimulation mit den TLR Liganden LPS und CpG oder anti-CD40 Antikörper über 72 Stunden wurden Aktivierungsmarker und Glukosetransporter (GLUTs) durchflusszytometrisch analysiert. Die [18]F-FDG Aufnahme wurde im Gamma-Counter gemessen. DC Lysate wurden auf Expression Glykolyse-relevanter Proteine mittels MAssenspektrometrie (MS) untersucht. [18]F-FDG markierte DC wurden in die Fußsohle von Mäusen injiziert, um deren Migration in vivo bildgebend darzustellen.

Ergebnisse BMDC und SPDC zeigten vor allem 24 Stunden nach TLR Stimulation eine starke Aufregulation von Aktivierungsmarkern, gefolgt von einer erhöhten [18]F-FDG Aufnahme. Gleichzeitig war auch die GLUT Expression hochreguliert. Die MS-Analyse der DC-Lysate zeigte eine differentielle Regulation von Glykolyse-relevanten Proteinen, die mit dem Stimulationsweg einherging. Als Proof of Principle wurden aktivierte DC mit [18]F-FDG markiert, um ihre Migration in vivo mittels PET/MR zu verfolgen.

Schlussfolgerung Immunstimulation dendritischer Zellen führt zu einer erhöhten [18]F-FDG Aufnahme, was den typischen Shift zur aeroben Glykolyse in aktivierten Immunzellen wiederspiegelt.



Publication History

Received: 09 September 2020

Accepted: 09 November 2020

Article published online:
16 December 2020

© 2020. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Everts B, Pearce EJ. Metabolic control of dendritic cell activation and function: recent advances and clinical implications. Frontiers in immunology 2014; 5: 203
  • 2 Fox CJ, Hammerman PS, Thompson CB. Fuel feeds function: energy metabolism and the T-cell response. Nature reviews Immunology 2005; 5 (11) 844-852
  • 3 Gerriets VA, Rathmell JC. Metabolic pathways in T cell fate and function. Trends Immunol 2012; 33 (04) 168-173
  • 4 Jacobs SR, Herman CE, Maciver NJ. et al. Glucose uptake is limiting in T cell activation and requires CD28-mediated Akt-dependent and independent pathways. Journal of immunology 2008; 180 (07) 4476-4486
  • 5 MacIver NJ, Jacobs SR, Wieman HL. et al. Glucose metabolism in lymphocytes is a regulated process with significant effects on immune cell function and survival. Journal of Leukocyte Biology 2008; 84 (04) 949-957
  • 6 Maratou E, Dimitriadis G, Kollias A. et al. Glucose transporter expression on the plasma membrane of resting and activated white blood cells. European journal of clinical investigation 2007; 37 (04) 282-290
  • 7 Krawczyk CM, Holowka T, Sun J. et al. Toll-like receptor–induced changes in glycolytic metabolism regulate dendritic cell activation. Blood 2010; 115 (23) 4742-4749
  • 8 Everts B, Amiel E, Huang SC-C. et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKK[epsiv] supports the anabolic demands of dendritic cell activation. Nat Immunol 2014; 15 (04) 323-332
  • 9 Everts B, Amiel E, van der Windt GJ. et al. Commitment to glycolysis sustains survival of NO-producing inflammatory dendritic cells. Blood 2012; 120 (07) 1422-1431
  • 10 Pearce EJ, Everts B. Dendritic cell metabolism. Nature reviews Immunology 2015; 15 (01) 18-29
  • 11 Malinarich F, Duan K, Hamid RA. et al. High mitochondrial respiration and glycolytic capacity represent a metabolic phenotype of human tolerogenic dendritic cells. Journal of immunology (Baltimore, Md: 1950) 2015; 194 (11) 5174-5186
  • 12 Sim WJ, Ahl PJ, Connolly JE. Metabolism Is Central to Tolerogenic Dendritic Cell Function. Mediators of inflammation 2016; 2016: 2636701
  • 13 Hennessy EJ, Parker AE, O’Neill LA. Targeting Toll-like receptors: emerging therapeutics?. Nature reviews Drug discovery 2010; 9 (04) 293-307
  • 14 Standiford TJ, Keshamouni VG. Breaking the tolerance for tumor: Targeting negative regulators of TLR signaling. Oncoimmunology 2012; 1 (03) 340-345
  • 15 Vacchelli E, Eggermont A, Sautes-Fridman C. et al. Trial Watch: Toll-like receptor agonists for cancer therapy. Oncoimmunology 2013; 2 (08) e25238
  • 16 Oldenburg M, Kruger A, Ferstl R. et al. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science (New York, NY) 2012; 337: 1111-1115
  • 17 Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 2010; 11 (05) 373-384
  • 18 Koblansky AA, Jankovic D, Oh H. et al. Recognition of profilin by Toll-like receptor 12 is critical for host resistance to Toxoplasma gondii. Immunity 2013; 38 (01) 119-130
  • 19 Engell-Noerregaard L, Hendel HW, Johannesen HH. et al. FDG PET scans as evaluation of clinical response to dendritic cell vaccination in patients with malignant melanoma. Cancer immunology, immunotherapy: CII 2013; 62 (01) 17-25
  • 20 Palmer WE, Rosenthal DI, Schoenberg OI. et al. Quantification of inflammation in the wrist with gadolinium-enhanced MR imaging and PET with 2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology 1995; 196 (03) 647-655
  • 21 Holtmann MH, Uenzen M, Helisch A. et al. 18F-Fluorodeoxyglucose positron-emission tomography (PET) can be used to assess inflammation non-invasively in Crohn's disease. Digestive diseases and sciences 2012; 57 (10) 2658-2668
  • 22 Saboury B, Salavati A, Brothers A. et al. FDG PET/CT in Crohn’s disease: correlation of quantitative FDG PET/CT parameters with clinical and endoscopic surrogate markers of disease activity. European journal of nuclear medicine and molecular imaging 2014; 41 (04) 605-614
  • 23 Smith TA. The rate-limiting step for tumor [18]fluoro-2-deoxy-D-glucose (FDG) incorporation. Nuclear medicine and biology 2001; 28 (01) 1-4
  • 24 Masurier C, Pioche-Durieu C, Colombo BM. et al. Immunophenotypical and functional heterogeneity of dendritic cells generated from murine bone marrow cultured with different cytokine combinations: implications for anti-tumoral cell therapy. Immunology 1999; 96 (04) 569-577
  • 25 Distler U, Kuharev J, Navarro P. et al. Label-free quantification in ion mobility-enhanced data-independent acquisition proteomics. Nature protocols 2016; 11 (04) 795-812
  • 26 Pektor S, Bausbacher N, Otto G. et al. Toll like receptor mediated immune stimulation can be visualized in vivo by [18F]FDG-PET. Nuclear medicine and biology 2016; 43 (11) 651-660
  • 27 Lang F, Stournaras C, Alesutan I. Regulation of transport across cell membranes by the serum- and glucocorticoid-inducible kinase SGK1. Molecular membrane biology 2014; 31 (01) 29-36
  • 28 Devraj K, Klinger ME, Myers RL. et al. GLUT-1 glucose transporters in the blood-brain barrier: differential phosphorylation. Journal of neuroscience research 2011; 89 (12) 1913-1925
  • 29 Bryant NJ, Govers R, James DE. Regulated transport of the glucose transporter GLUT4. Nature reviews Molecular cell biology 2002; 3 (04) 267-277
  • 30 Klip A, Sun Y, Chiu TT. et al. Signal transduction meets vesicle traffic: the software and hardware of GLUT4 translocation. American journal of physiology Cell physiology 2014; 306 (10) C879-C886
  • 31 Wilson JE. Hexokinases. Reviews of physiology, biochemistry and pharmacology 1995; 126: 65-198
  • 32 Rehman A, Hemmert KC, Ochi A. et al. Role of fatty-acid synthesis in dendritic cell generation and function. Journal of immunology (Baltimore, Md: 1950) 2013; 190 (09) 4640-4649
  • 33 Allenspach EJ, Lemos MP, Porrett PM. et al. Migratory and lymphoid-resident dendritic cells cooperate to efficiently prime naive CD4 T cells. Immunity 2008; 29 (05) 795-806
  • 34 Dittrich D, Pyka T, Scheidhauer K. et al. Textural features in FDG-PET/CT can predict outcome in melanoma patients to treatment with Vemurafenib and Ipililumab. Nuklearmedizin Nuclear medicine 2020; 59 (03) 228-234
  • 35 Lappin MB, Weiss JM, Delattre V. et al. Analysis of mouse dendritic cell migration in vivo upon subcutaneous and intravenous injection. Immunology 1999; 98 (02) 181-188
  • 36 Martelli C, Borelli M, Ottobrini L. et al. In vivo imaging of lymph node migration of MNP- and (111)In-labeled dendritic cells in a transgenic mouse model of breast cancer (MMTV-Ras). Molecular imaging and biology: MIB: the official publication of the Academy of Molecular Imaging 2012; 14 (02) 183-196
  • 37 Lee SB, Lee SW, Jeong SY. et al. Engineering of Radioiodine-Labeled Gold Core-Shell Nanoparticles As Efficient Nuclear Medicine Imaging Agents for Trafficking of Dendritic Cells. ACS applied materials & interfaces 2017; 9 (10) 8480-8489
  • 38 Xu Y, Wu C, Zhu W. et al. Superparamagnetic MRI probes for in vivo tracking of dendritic cell migration with a clinical 3 T scanner. Biomaterials 2015; 58: 63-71