Subscribe to RSS
DOI: 10.1055/a-1308-3888
Experimentelle Evaluation des Adhear, eines neuen transkutanen Knochenleitungshörgeräts
Experimental Evaluation of the Adhear, a Novel Transcutaneous Bone Conduction Hearing AidZusammenfassung
Hintergrund Es sind unterschiedliche Knochenleitungshörgeräte (KLHG) verfügbar, die auf unterschiedliche Art mit dem Stimulationsort in Kontakt stehen. Ziel dieser Arbeit ist eine experimentelle Evaluation eines neuen transkutanen KLHG, das ohne Anpressdruck an die Haut angekoppelt wird.
Material und Methoden Die Messungen wurden an einem Thiel-konservierten Ganzkopfkadaver durchgeführt. Zur Stimulation zwischen 0,1 und 10 kHz wurde ein Adhear verwendet, das über einen Signalgenerator und Verstärker direkt mit 1Vrms aktiviert wurde. Die Kopplung des KLHG erfolgte am Mastoid über ein Hautpflaster. Die Vibrationen des Schädels wurden am ipsi- und kontralateralen Promontorium und an der ipsi-, top- und kontralateralen Schädeloberfläche mittels 3D-Laser-Doppler-Vibrometers registriert. Insgesamt wurden ~200 Punkte auf der Schädeloberfläche (~15–20 mm Abstand) gemessen. Die Daten wurden mit entsprechenden Messungen verglichen, bei denen ein Baha Power als KLHG verwendet wurde. Dieses wurde am Mastoid über einen 5-Newton-Stahlbügel an die Haut gekoppelt.
Ergebnisse Die ipsi- und kontralateralen promontorialen Vibrationen bei Stimulation mit dem Adhear sind in ihrer frequenzspezifischen Amplitude und Phase wie auch in der Zusammensetzung der Bewegungskomponenten mit der Stimulation mittels Baha Power am Stahlbügel vergleichbar. Ebenso erfährt die Schädeloberfläche unter beiden Ankopplungsarten eine vergleichbare komplexe räumliche Bewegung.
Schlussfolgerungen Obwohl das Adhear ohne Anpressdruck und das Baha Power am Stahlband mit 5N an die Haut über dem Mastoid gekoppelt werden, unterscheiden sich die untersuchten Parameter kaum.
Abstract
Objective Different bone conduction hearing aids (BCHA) are commercially available. They are attached to the head in different ways. The aim of this work is an experimental evaluation of the performance of a new transcutaneous (surface mounted via adhesive pad) actuator of a BCHA.
Material and Methods Experiments were conducted on a Thiel embalmed whole head cadaver specimen. The electromagnetic actuators from a commercial BCHA (Adhear) was used to provide stepped sine stimulus in the range of 0.1–10 kHz. The BCHA was coupled to a skin surface adhesion that was placed on the mastoid. The response was monitored as motions of the ipsi- and contralateral promontory, and as motions of the ipsi-, top- and contralateral skull surface. Promontory motion was quantified via a three-dimensional laser Doppler vibrometer (3D LDV) system. Analogously, surface motion was registered by sequentially measuring ~200 points on the skull surface (~ 15–20 mm pitch) via 3D LDV. The data were compared to corresponding measurements obtained with a Baha Power that was coupled to skin on the Mastoid via a 5 Newton steelband.
Results Ipsilateral and contralateral promontory vibration for stimulation with the Adhear are comparable to stimulation with the Baha Power on the 5 Newton steelband with regard to frequency dependent amplitude and phase, as well as the contribution of the motion components. The surface motion of the skull experiences a similar complex motion for both stimulation modes.
Conclusions Although the Adhear is coupled without any pressure to the skin over the mastoid whereas the Baha power is attached with a 5 Newton steelband, the vibration parameters investigated are comparable.
Schlüsselwörter
Knochenleitung - 3D-Laser-Doppler-Vibrometrie - Oberflächenwellen - Vibrationen des Promontoriums - Kadaverköpfe - AnkopplungKey words
bone conduction - 3D Laser Doppler Vibrometer - surface waves - promontory motion - cadaver head - coupling methodPublication History
Received: 28 August 2020
Accepted: 06 November 2020
Article published online:
01 December 2020
© 2020. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Hulecki LR, Small SA. Behavioral bone-conduction thresholds for infants with normal hearing. J Am Acad Audiol 2011; 22 (02) 81-92
- 2 Pfiffner F, Caversaccio MD, Kompis M. Audiological results with BahaVR in conductive and mixed hearing loss, in “Implantable Bone Conduction Hearing Aids” (Karger, Basel). 2011 71. 73-83
- 3 Reinfeldt S, Håkansson B, Taghavi H. et al. New developments in bone-conduction hearing implants: A review. Medical Devices 2015; 16 (08) 79-93
- 4 Chang Y, Stenfelt S. Characteristics of Bone-Conduction Devices Simulated in a Finite-Element Model of a Whole Human Head. Trends Hear 2019; 23: 2331216519836053
- 5 Håkansson B, Tjellström A, Rosenhall U. Hearing thresholds with direct bone conduction versus conventional bone conduction. Scand Audiol 1984; 13 (01) 3-13
- 6 Håkansson B, Tjellström A, Rosenhall U. Acceleration levels at hearing threshold with direct bone conduction versus conventional bone conduction. Acta Otolaryngol 1985; 100 (3–4): 240-252
- 7 Ito T, Röösli C, Kim CJ. et al. Bone conduction thresholds and skull vibration measured on the teeth during stimulation at different sites on the human head. Audiol Neurootol 2011; 16 (01) 12-22
- 8 Nilo ER. The relation of vibrator surface area and static application force to the vibrator-to-head coupling. J Speech Hear Res 1968; 11: 805-810
- 9 Yang EY, Stuart A, Stenstrom R. et al. Effect of vibrator to head coupling force on the auditory brain stem response to bone conducted clicks in newborn infants. Ear Hear 1991; 12: 55-60
- 10 Rigato C, Reinfeldt S, Håkansson B. et al. Effect of transducer attachment on vibration transmission and transcranial attenuation for direct drive bone conduction stimulation. Hear Res 2019; 381: 107763
- 11 Thiel W. Die Konservierung ganzer Leichen in natürlichen Farben. Ann Anat 1992; 174 (03) 185-195
- 12 Dobrev I, Sim JH, Pfiffner F. et al. Performance evaluation of a novel piezoelectric subcutaneous bone conduction device. Hear Res 2018; 370: 94-104
- 13 Dobrev I, Sim JH, Pfiffner F. et al. Experimental investigation of promontory motion and intracranial pressure following bone conduction: Stimulation site and coupling type dependence. Hear Res 2019; 378: 108-125
- 14 Dobrev I, Farahmandi TS, Sim JH. et al. Dependence of skull surface wave propagation on stimulation sites and direction under bone conduction. JASA 2020; 147 (03) 1985-2001
- 15 Weiss R, Loth A, Leinung M. et al. A new adhesive bone conduction hearing system as a treatment option for transient hearing loss after middle ear surgery. Eur Arch Otorhinolaryngol 2020; 277 (03) 751-759
- 16 Almuhawas F, Alzhrani F, Saleh S. et al. Auditory Performance and Subjective Satisfaction with the ADHEAR System. Audiol Neurootol 2020; 16: 1-10
- 17 Gawliczek T, Munzinger F, Anschuetz L. et al. Unilateral and Bilateral Audiological Benefit With an Adhesively Attached, Noninvasive Bone Conduction Hearing System. Otol Neurotol 2018; 39 (08) 1025-1030
- 18 Skarzynski PH, Ratuszniak A, Osinska K. et al. A Comparative Study of a Novel Adhesive Bone Conduction Device and Conventional Treatment Options for Conductive Hearing Loss. Otol Neurotol 2019; 40 (07) 858-864
- 19 Gawliczek T, Wimmer W, Munzinger F. et al Speech Understanding and Sound Localization with a New Nonimplantable Wearing Option for Baha. Biomed Res Int 2018; 2018: 5264124 . eCollection 2018
- 20 Ito T, Röösli C, Kim CJ. et al. Bone conduction thresholds and skull vibration measured on the teeth during stimulation at different sites on the human head. Audiol Neurootol 2011; 16 (01) 12-22
- 21 Eeg-Olofsson M, Stenfelt S, Taghavi H. et al. Transmission of bone conducted sound – correlation between hearing perception and cochlear vibration. Hear Res 2013; 306: 11-20
- 22 Nolan M, Lyon DJ. Transcranial attenuation in bone conduction audiometry. J Laryngol Otol 1981; 95 (06) 597-608
- 23 Stenfelt S. Transcranial attenuation of bone-conducted sound when stimulation is at the mastoid and at the bone conduction hearing aid position. Otol Neurotol 2012; 33 (02) 105-114