RSS-Feed abonnieren
Bitte kopieren Sie die angezeigte URL und fügen sie dann in Ihren RSS-Reader ein.
https://www.thieme-connect.de/rss/thieme/de/10.1055-s-00000084.xml
Synthesis 2021; 53(13): 2212-2218
DOI: 10.1055/a-1331-7346
DOI: 10.1055/a-1331-7346
paper
Mild and Efficient Copper-Catalyzed Synthesis of Trisubstituted Pyrroles
The project was supported by the Ministry of Science and Technology (MOST 106-2113-M -018-008, MOST 107-2113-M-018-008, MOST 108-2113-M-018-009). M. Kapoor thanks the Start-up funding from Chitkara University and Chitkara University Research and Innovation Network.
Abstract
A sustainable and time economic approach has been developed for the synthesis of polysubstituted pyrroles using copper iodide as a catalyst. The reaction proceeded through imine formation followed by cyclization with alkyne-Cu intermediate, which was supported by control experiments studies. The newly formed substituted pyrroles were obtained in excellent yields with high regioselectivity under mild conditions.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1331-7346.
- Supporting Information
- CIF File
Publikationsverlauf
Eingereicht: 24. September 2020
Angenommen nach Revision: 07. Dezember 2020
Accepted Manuscript online:
07. Dezember 2020
Artikel online veröffentlicht:
02. März 2021
© 2020. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Estévez V, Villacampa M, Menéndez JC. Chem. Soc. Rev. 2014; 43: 4633
- 2 Ahmad S, Alam O, Naim MJ, Shaquiquzzaman M, Alam MM, Iqbal M. Eur. J. Med. Chem. 2018; 157: 527
- 3 Herath A, Cosford ND. Org. Lett. 2010; 12: 5182
- 4 Leonardi M, Estévez V, Villacampa M, Menéndez JC. Synthesis 2019; 51: 816
- 5 Aghapoor K, Ebadi-Nia L, Mohsenzadeh F, Morad MM, Balavar Y, Darabi HR. J. Organomet. Chem. 2012; 708: 25
- 6 Rahmatpour A. J. Organomet. Chem. 2012; 712: 15
- 7 Balakrishna A, Aguiar A, Sobral PJ. M, Wani MY, Almeida e Silva J, Sobral AJ. F. N. Catal. Rev. 2019; 61: 84
- 8 Azizi N, Khajeh-Amiri A, Ghafuri H, Bolourtchian M, Saidi MR. Synlett 2009; 2245
- 9 Alberola A, Ortega AG, Sádaba ML, Sañudo C. Tetrahedron 1999; 55: 6555
- 10 Shiner CM, Lash TD. Tetrahedron 2005; 61: 11628
- 11 Larionov OV, de Meijere A. Angew. Chem. Int. Ed. 2005; 44: 5664
- 12 Liu Y, Hu H, Wang X, Zhi S, Kan Y, Wang C. J. Org. Chem. 2017; 82: 4194
- 13 Mali PR, Khomane NB, Sridhar B, Meshram H, Likhar PR. New J. Chem. 2018; 42: 13819
- 14 Arrieta A, Otaegui D, Zubia A, Cossio FP, Diaz-Ortiz A, de la Hoz A, Herrero MA, Prieto P, Foces-Foces C, Pizarro JL. J. Org. Chem. 2007; 72: 4313
- 15 Wang Z, Shi Y, Luo X, Han D.-M, Deng W.-P. New J. Chem. 2013; 37: 1742
- 16 Michlik S, Kempe R. Nat. Chem. 2013; 5: 140
- 17 Srimani D, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2013; 52: 4012
- 18 Zhang M, Neumann H, Beller M. Angew. Chem. Int. Ed. 2013; 52: 597
- 19 Leonardi M, Villacampa M, Menéndez JC. Chem. Sci. 2018; 9: 2042
- 20 Wang X, Xu X.-P, Wang S.-Y, Zhou W, Ji S.-J. Org. Lett. 2013; 15: 4246
- 21 Zhang M, Fang X, Neumann H, Beller M. J. Am. Chem. Soc. 2013; 135: 11384
- 22 Chen Z, Lu B, Ding Z, Gao K, Yoshikai N. Org. Lett. 2013; 15: 1966
- 23 Zheng J, Huang L, Li Z, Wu W, Li J, Jiang H. Chem. Commun. 2015; 51: 5894
- 24 Shi Z, Suri M, Glorius F. Angew. Chem. Int. Ed. 2013; 52: 4892
- 25 Matsui K, Shibuya M, Yamamoto Y. Commun. Chem. 2018; 1: 21
- 26 Robles-Machín R, López-Pérez A, González-Esguevillas M, Adrio J, Carretero JC. Chem. Eur. J. 2010; 16: 9864
- 27 Tian Z, Xu J, Liu B, Tan Q, Xu B. Org. Lett. 2018; 20: 2603
- 28 Yasukawa N, Kuwata M, Imai T, Monguchi Y, Sajiki H, Sawama Y. Green Chem. 2018; 20: 4409
- 29 Su S, Porco JA. J. Am. Chem. Soc. 2007; 129: 7744
- 30 Rakshit S, Patureau FW, Glorius F. J. Am.Chem. Soc. 2010; 132: 9585
- 31 Neumann JJ, Suri M, Glorius F. Angew. Chem. Int. Ed. 2010; 49: 7790
- 32 Huestis MP, Chan L, Stuart DR, Fagnou K. Angew. Chem. Int. Ed. 2011; 50: 1338
- 33 Stuart DR, Alsabeh P, Kuhn M, Fagnou K. J. Am.Chem. Soc. 2010; 132: 18326
- 34 Srimani D, Ben-David Y, Milstein D. Angew. Chem. Int. Ed. 2013; 52: 4012
- 35 Iida K, Miura T, Ando J, Saito S. Org. Lett. 2013; 15: 1436
- 36 Su Z, Gu W, Qian S, Xue S, Wang C. Eur. J. Org. Chem. 2018; 1019
- 37 Gilbert ZW, Hue RJ, Tonks IA. Nat. Chem. 2016; 8: 63
- 38 Zhao M.-N, Ren Z.-H, Wang Y.-Y, Guan Z.-H. Chem. Eur. J. 2014; 20: 1839
- 39 Tang X, Huang L, Qi C, Wu W, Jiang H. Chem. Commun. 2013; 49: 9597
- 40 Borghs JC, Azofra LM, Biberger T, Linnenberg O, Cavallo L, Rueping M, El-Sepelgy O. ChemSusChem 2019; 12: 3083
- 41 Hwu JR, Roy A, Panja A, Huang W.-C, Hu Y.-C, Tan K.-T, Lin C.-C, Hwang K.-C, Hsu M.-H, Tsay S.-C. J. Org. Chem. 2020; 85: 9835
- 42 Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J. Am. Chem. Soc. 2005; 127: 210
- 43 Rodionov VO, Fokin VV, Finn MG. Angew. Chem. Int. Ed. 2005; 44: 2210
- 44 Lin ZQ, Li C.-D, Zhou Z.-C, Xue S, Gao J.-R, Ye Q, Li Y.-J. Synlett 2019; 30: 1442