Subscribe to RSS
DOI: 10.1055/a-1348-4311
Synthesis of Substituted β-Styrylmalonates by Sequential Isomerization of 2-Arylcyclopropane-1,1-dicarboxylates and (2-Arylethylidene)malonates
This work was supported by the Russian Science Foundation (grant No. 19-73-00258).
Abstract
A method has been developed for the synthesis of substituted β-styrylmalonates by conversion of 2-arylcyclopropane-1,1-dicarboxylates (ACDCs) in the presence of gallium trichloride into the corresponding 1,2-zwitterionic intermediates or (2-arylethylidene)malonates, followed by treatment with pyridine at room temperature leading to an isomerization of the emerging double bond. This method allows one to expand these reactions to include ACDCs with acceptor substituents at the aromatic ring.
Key words
donor-acceptor cyclopropanes - (2-arylethylidene)malonates - β-styrylmalonates - gallium trichloride - isomerizationSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1348-4311.
- Supporting Information
Publication History
Received: 06 December 2020
Accepted after revision: 08 January 2021
Accepted Manuscript online:
08 January 2021
Article published online:
22 February 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Reissig HU, Zimmer R. Chem. Rev. 2003; 103: 1151
- 1b De Simone F, Waser J. Synthesis 2009; 3353
- 1c Carson CA, Kerr MA. Chem. Soc. Rev. 2009; 38: 3051
- 1d Melnikov MY, Budynina EM, Ivanova OA, Trushkov IV. Mendeleev Commun. 2011; 21: 293
- 1e Schneider TF, Kaschel J, Werz DB. Angew. Chem. Int. Ed. 2014; 53: 5504
- 1f De Nanteuil F, De Simone F, Frei R, Benfatti F, Serrano E, Waser J. Chem. Commun. 2014; 50: 10912
- 1g Novikov RA, Tomilov YV. Mendeleev Commun. 2015; 25: 1
- 1h Grover HK, Emmett MR, Kerr MA. Org. Biomol. Chem. 2015; 13: 655
- 1i Reissig H.-U, Werz DB. Israel J. Chem. 2016; 56: 365
- 1j Budynina EM, Ivanov KL, Sorokin ID, Melnikov MY. Synthesis 2017; 49: 3035
- 1k Pagenkopf BL, Vemula N. Eur. J. Org. Chem. 2017; 2561
- 1l Meazza M, Guo H, Rios R. Org. Biomol. Chem. 2017; 15: 2479
- 1m Tomilov YV, Menchikov LG, Novikov RA, Ivanova OA, Trushkov IV. Russ. Chem. Rev. 2018; 87: 201
- 1n Ivanova OA, Trushkov IV. Chem. Rec. 2019; 19: 1
- 1o Werz DB, Biju AT. Angew. Chem. Int. Ed. 2020; 59: 3385
- 2a Wallbaum J, Garve LK. B, Jones PG, Werz DB. Org. Lett. 2017; 19: 98
- 2b Dey R, Banerjee P. Org. Lett. 2017; 19: 304
- 2c Chidley T, Vemula N, Carson CA, Kerr MA, Pagenkopf BL. Org. Lett. 2016; 18: 2922
- 2d Das S, Chakrabarty S, Daniliuc CG, Studer A. Org. Lett. 2016; 18: 2784
- 2e Garve LK. B, Pawliczek M, Wallbaum J, Jones PG, Werz DB. Chem. Eur. J. 2016; 22: 521
- 2f Novikov RA, Denisov DA, Potapov KV, Tkachev YV, Shulishov EV, Tomilov YV. J. Am. Chem. Soc. 2018; 140: 14381
- 2g Verma K, Banerjee P. Adv. Synth. Catal. 2016; 358: 2053
- 2h Sabbatani J, Maulide N. Angew. Chem. Int. Ed. 2016; 55: 6780
- 2i Pitts CR, Ling B, Snyder JA, Bragg AE, Lectka T. J. Am. Chem. Soc. 2016; 138: 6598
- 2j Novikov RA, Borisov DD, Tarasova AV, Tkachev YV, Tomilov YV. Angew. Chem. Int. Ed. 2018; 57: 10293
- 2k Gharpure SJ, Mane SP, Nanda LN, Shukla MK. Israel J. Chem. 2016; 56: 553
- 2l Mlostoń G, Kowalczyk M, Augustin AU, Jones PG, Werz DB. Belstein J. Org. Chem. 2020; 16: 1288
- 2m Augustin AU, Merz JL, Jones PG, Mlostoń G, Werz DB. Org. Lett. 2019; 21: 9405
- 3a Borisov DD, Novikov RA, Tomilov YV. Angew. Chem. Int. Ed. 2016; 55: 12233
- 3b Borisov DD, Novikov RA, Eltysheva AS, Tkachev YV, Tomilov YV. Org. Lett. 2017; 19: 3731
- 3c Borisov DD, Novikov RA, Tomilov YV. Tetrahedron Lett. 2017; 58: 3712
- 3d Borisov DD, Chermashentsev GR, Novikov RA, Tomilov YV. Tetrahedron Lett. 2019; 60: 746
- 4 Hoye TR, Richardson WS. J. Org. Chem. 1989; 54: 688
- 5a Ivanova OA, Budynina EM, Skvortsov DA, Limoge M, Bakin AV, Chagarovskiy AO, Trushkov IV, Melnikov MY. Chem. Commun. 2013; 49: 11482
- 5b Chagarovskiy AO, Ivanova OA, Budynina EM, Trushkov IV, Melnikov MY. Tetrahedron Lett. 2011; 52: 4421
- 6 Tsuruda K, Tokumoto T, Inoue N, Nakajima M, Nenoto T. Eur. J. Org. Chem. 2018; 2836
- 7 Wang Y, Fordyce EA. F, Chen FY, Lam HW. Angew. Chem. Int. Ed. 2008; 47: 7350
- 8a Novikov RA, Tarasova AV, Korolev VA, Timofeev VP, Tomilov YV. Angew. Chem. Int. Ed. 2014; 53: 3187
- 8b Novikov RA, Korolev VA, Timofeev VP, Tomilov YV. Tetrahedron Lett. 2011; 52: 4996
- 9a Zhu M, Liu J, Yu J, Chen L, Zhang C, Wang L. Org. Lett. 2014; 16: 1856
- 9b Verma K, Banerjee P. Adv. Synth. Cat. 2018; 360: 3687
- 10 Chagarovskiy AO, Ivanova OA, Rakhmankulov ER, Budynina EM, Trushkov IV. Melnikov M. Y. 2010; 352: 3179
- 11 Pei L, Qian W. Synlett 2006; 1719
- 12 Singh R, Singh GC, Ghosh SK. Eur. J. Org. Chem. 2007; 5376
- 13 Novikov RA, Tarasova AV, Tomilov YV. Synlett 2016; 27: 1367
- 14a Denisov DA, Borisov DD, Korolev VA, Novikov RA, Tomilov YV. J. Org. Chem. 2019; 84: 6174
- 14b Zotova MA, Novikov RA, Shulishov EV, Tomilov YV. J. Org. Chem. 2018; 83: 8193
- 14c Denisov DA, Borisov DD, Potapov KV, Novikov RA, Tomilov YV. Mendeleev Commun. 2019; 29: 417
- 14d Novikov RA, Levina AA, Borisov DD, Volodin AD, Korlyukov AA, Tkachev YV, Platonova YaB, Tomilova LG, Tomilov YV. Organometallics 2020; 39: 2580
- 15 Kreft A, Lücht A, Grunenberg J, Jones PG, Werz DB. Angew. Chem. Int. Ed. 2019; 58: 1955
- 16 Gonzalez-Bobes F, Fenster MD. B, Kiau S, Kolla L, Kolotuchin S, Soumeillant M. Adv. Synth. Catal. 2008; 350: 813