Klinische Neurophysiologie 2021; 52(01): 29-38
DOI: 10.1055/a-1353-9099
Übersicht

Wearables bei Epilepsien

Wearables in Epilepsies
Rainer Surges

Zusammenfassung

Epileptische Anfälle führen zu verschiedensten körperlichen Symptomen, die je nach Art und Ausprägung mit geeigneten Geräten gemessen werden und als Surrogatmarker epileptischer Anfälle dienen können. Dominierende motorische Symptome können mit Beschleunigungssensoren oder elektromyografisch erfasst werden. Bei fokalen Anfällen mit fehlender oder geringer motorischer Beteiligung können autonome Phänomene wie Änderungen der Herzrate, Atmung und des elektrischen Hautwiderstandes per Elektrokardiografie, Photopletysmografie und Hautsensoren gemessen werden. Die in den heutigen Wearables integrierten Sensoren können diese Körpersignale messen und zur automatisierten Anfallserkennung nutzbar machen. In dieser Übersichtsarbeit werden verschiedene Sensortechnologien, Wearables und deren Anwendung zur automatisierten Erkennung epileptischer Anfälle vorgestellt, Gütekriterien zur Einschätzung mobiler Gesundheitstechnologien diskutiert und klinisch geprüfte Systeme zusammengefasst.

Abstract

Epileptic seizures cause a wide spectrum of physical symptoms, which can be measured by appropriate devices and serve as surrogate markers of epileptic activity. Predominant motor symptoms can be assessed using accelerometry or electromyography sensors. In focal seizures without or with minor motor symptoms only, autonomic phenomena such as alterations of heart rate, breathing and skin conductance can be measured by electrocardiography, photopletysmography or skin electrodes. The sensors commonly integrated in wearables can assess these body signals and contribute to seizure detection. In this review, sensor technologies, wearables and their application in automated seizure detection devices are presented, performance metrics of mobile health technologies are discussed and clinically validated detection systems are summarised.



Publication History

Article published online:
23 February 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Pensel MC, Nass RD, Taubøll E. et al. Prevention of sudden unexpected death in epilepsy: current status and future perspectives. Expert Rev Neurother 2020; 20: 497-508
  • 2 Mackay M, Mahlaba H, Gavillet E. et al. Seizure self-prediction: Myth or missed opportunity?. Seizure 2017; 51: 180-185
  • 3 Hoppe C, Poepel A, Elger CE. Epilepsy: accuracy of patient seizure counts. Arch Neurol 2007; 64: 1595-1599 doi: 10.1001/archneur.64.11.1595
  • 4 Shegog R, Braverman L, Hixson JD. Digital and technological opportunities in epilepsy: Toward a digital ecosystem for enhanced epilepsy management. Epilepsy Behav 2020; 102: 106663
  • 5 Hoppe C, Feldmann M, Blachut B. et al. Novel techniques for automated seizure registration: Patientsʼ wants and needs. Epilepsy Behav 2015; 52 (Pt A) 1-7
  • 6 Bruno E, Biondi A, Böttcher S. et al. Day and night comfort and stability on the body of four wearable devices for seizure detection: A direct user-experience. Epilepsy Behav 2020; 112: 107478
  • 7 Tatum WO, Hirsch LJ, Gelfand MA. et al. Assessment of the Predictive Value of Outpatient Smartphone Videos for Diagnosis of Epileptic Seizures. JAMA Neurol 2020; 77: 593-600
  • 8 Li P, Benezeth Y, Macwan R. et al. Video-Based Pulse Rate Variability Measurement Using Periodic Variance Maximization and Adaptive Two-Window Peak Detection. Sensors (Basel) 2020; 20: 2752
  • 9 Au Yong HM, Minato E, Paul E. et al. Can seizure-related heart rate differentiate epileptic from psychogenic nonepileptic seizures?. Epilepsy Behav 2020; 112: 107353
  • 10 Beniczky S, Karoly P, Nurse E, Ryvlin P, Cook M. Machine learning and wearable devices of the future. Epilepsia, im Druck
  • 11 Goldenholz DM, Moss R, Jost DA. et al. Common data elements for epilepsy mobile health systems. Epilepsia 2018; 59: 1020-1026
  • 12 Beniczky S, Ryvlin P. Standards for testing and clinical validation of seizure detection devices. Epilepsia 2018; 59 (Suppl 1): 9-13
  • 13 Bidwell J, Khuwatsamrit T, Askew B. et al. Seizure reporting technologies for epilepsy treatment: A review of clinical information needs and supporting technologies. Seizure 2015; 32: 109-117
  • 14 Nasseri M, Nurse E, Glasstetter M. et al. Signal quality and patient experience with wearable devices for epilepsy management. Epilepsia 2020; 61 (Suppl 1): S25-S35
  • 15 Narechania AP, Garić II, Sen-Gupta I. et al. Assessment of a quasi-piezoelectric mattress monitor as a detection system for generalized convulsions. Epilepsy Behav 2013; 28: 172-176
  • 16 van Westrhenen A, Petkov G, Kalitzin SN. et al. Automated video-based detection of nocturnal motor seizures in children. Epilepsia 2020; 61 (Suppl 1): S36-S40
  • 17 Beniczky S, Conradsen I, Moldovan M. et al. Automated differentiation between epileptic and nonepileptic convulsive seizures. Ann Neurol 2015; 77: 348-351
  • 18 Beniczky S, Conradsen I, Pressler R. et al. Quantitative analysis of surface electromyography: Biomarkers for convulsive seizures. Clin Neurophysiol 2016; 127: 2900-2907
  • 19 Beniczky S, Polster T, Kjaer TW. et al. Detection of generalized tonic-clonic seizures by a wireless wrist accelerometer: a prospective, multicenter study. Epilepsia 2013; 54: e58-e61
  • 20 Beniczky S, Conradsen I, Henning O. et al. Automated real-time detection of tonic-clonic seizures using a wearable EMG device. Neurology 2018; 90: e428-e434
  • 21 Halford JJ, Sperling MR, Nair DR. et al. Detection of generalized tonic-clonic seizures using surface electromyographic monitoring. Epilepsia 2017; 58: 1861-1869
  • 22 Conradsen I, Wolf P, Sams T. et al. Patterns of muscle activation during generalized tonic and tonic-clonic epileptic seizures. Epilepsia 2011; 52: 2125-2132
  • 23 Nijsen TM, Aarts RM, Arends JB. et al. Automated detection of tonic seizures using 3-D accelerometry. 4th European Conference of the International Federation for Medical and Biological Engineering IFMBE Proceedings 2008; 22: 188-191
  • 24 Dalton A, Patel S, Chowdhury AR. et al. Development of a body sensor network to detect motor patterns of epileptic seizures. IEEE Trans Biomed Eng 2012; 59: 3204-3211
  • 25 Van de Vel A, Cuppens K, Bonroy B. et al. Long-term home monitoring of hypermotor seizures by patient-worn accelerometers. Epilepsy Behav 2013; 26: 118-125
  • 26 Baumgartner C, Lurger S, Leutmezer F. Autonomic symptoms during epileptic seizures. Epileptic Disord 2001; 3: 103-116
  • 27 Bateman LM, Li CS, Seyal M. Ictal hypoxemia in localization-related epilepsy: analysis of incidence, severity and risk factors. Brain 2008; 131 (Pt12) 3239-3245
  • 28 Surges R, Scott CA, Walker MC. Enhanced QT shortening and persistent tachycardia after generalized seizures. Neurology 2010; 74: 421-426 doi: 10.1212/WNL.0b013e3181ccc706
  • 29 Poh MZ, Loddenkemper T, Reinsberger C. et al. Autonomic changes with seizures correlate with postictal EEG suppression. Neurology 2012; 78: 1868-1876
  • 30 Eggleston KS, Olin BD, Fisher RS. Ictal tachycardia: the head-heart connection. Seizure 2014; 23: 496-505
  • 31 Ryvlin P, Cammoun L, Hubbard I. et al. Noninvasive detection of focal seizures in ambulatory patients. Epilepsia, im Druck
  • 32 Leutmezer F, Schernthaner C, Lurger S. et al. Electrocardiographic changes at the onset of epileptic seizures. Epilepsia 2003; 44: 348-354
  • 33 Surges R, Jordan A, Elger CE. Ictal modulation of cardiac repolarization, but not of heart rate, is lateralized in mesial temporal lobe epilepsy. PLoS One 2013; 8: e64765
  • 34 Jordan A, Bausch M, Surges R. Semi-automatic quantification of seizure-related effects on heart activity. Epilepsy Res 2019; 157: 106187
  • 35 Jordan A, Bausch M, Surges R. Modulation of ictal heart rate is individually lateralized in temporal lobe epilepsy. Clin Neurophysiol 2020; 131: 2932-2933
  • 36 Jeppesen J, Fuglsang-Frederiksen A, Johansen P. et al. Seizure detection based on heart rate variability using a wearable electrocardiography device. Epilepsia 2019; 60: 2105-2113
  • 37 Jeppesen J, Fuglsang-Frederiksen A, Johansen P. et al. Seizure detection using heart rate variability: A prospective validation study. Epilepsia 2020; 61 (Suppl 1): S41-S46
  • 38 van Andel J, Ungureanu C, Aarts R. et al. Using photoplethysmography in heart rate monitoring of patients with epilepsy. Epilepsy Behav 2015; 45: 142-145
  • 39 Vandecasteele K, De Cooman T, Gu Y. et al. Automated Epileptic Seizure Detection Based on Wearable ECG and PPG in a Hospital Environment. Sensors (Basel) 2017; 17: 2338
  • 40 Hampel KG, Jahanbekam A, Elger CE. et al. Seizure-related modulation of systemic arterial blood pressure in focal epilepsy. Epilepsia 2016; 57: 1709-1718
  • 41 Zhang Q, Zhou D, Zeng X. Highly wearable cuff-less blood pressure and heart rate monitoring with single-arm electrocardiogram and photoplethysmogram signals. Biomed Eng Online 2017; 16: 23 doi: 10.1186/s12938-017-0317-z
  • 42 Onorati F, Regalia G, Caborni C. et al. Multicenter clinical assessment of improved wearable multimodal convulsive seizure detectors. Epilepsia 2017; 58: 1870-1879
  • 43 Goldenholz DM, Kuhn A, Austermuehle A. et al. Long-term monitoring of cardiorespiratory patterns in drug-resistant epilepsy. Epilepsia 2017; 58: 77-84
  • 44 Calandra-Buonaura G, Toschi N, Provini F. et al. Physiologic autonomic arousal heralds motor manifestations of seizures in nocturnal frontal lobe epilepsy: implications for pathophysiology. Sleep Med 2012; 13: 252-262
  • 45 Ghiasi S, Greco A, Barbieri R. et al. Assessing Autonomic Function from Electrodermal Activity and Heart Rate Variability During Cold-Pressor Test and Emotional Challenge. Sci Rep 2020; 10: 5406
  • 46 Baumgartner C, Koren JP. Seizure detection using scalp-EEG. Epilepsia 2018; 59 (Suppl 1): 14-22
  • 47 Titgemeyer Y, Surges R, Altenmüller DM. et al. Can commercially available wearable EEG devices be used for diagnostic purposes?. An explorative pilot study. Epilepsy Behav 2020; 103 (Pt A) 106507
  • 48 Vandecasteele K, De Cooman T, Dan J. et al. Visual seizure annotation and automated seizure detection using behind-the-ear electroencephalographic channels. Epilepsia 2020; 61: 766-775
  • 49 Zibrandtsen IC, Kidmose P, Christensen CB. et al. Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy – A comparison with scalp EEG monitoring. Clin Neurophysiol 2017; 128: 2454-2461
  • 50 Weisdorf S, Duun-Henriksen J, Kjeldsen MJ. et al. Ultra-long-term subcutaneous home monitoring of epilepsy-490 days of EEG from nine patients. Epilepsia 2019; 60: 2204-2214
  • 51 Meisel C, El Atrache R, Jackson M. et al. Machine learning from wristband sensor data for wearable, noninvasive seizure forecasting. Epilepsia 2020; 61: 2653-2666
  • 52 Rao VR, G. Leguia M, Tcheng TK. et al. Cues for seizure timing. Epilepsia, im Druck
  • 53 Duun-Henriksen J, Baud M, Richardson MP. et al. A new era in electroencephalographic monitoring? Subscalp devices for ultra-long-term recordings. Epilepsia 2020; 61: 1805-1817
  • 54 Baud MO, Rao VR. Gauging seizure risk. Neurology 2018; 91: 967-973 doi: 10.1212/WNL.0000000000006548
  • 55 Ramgopal S, Thome-Souza S, Loddenkemper T. Chronopharmacology of anti-convulsive therapy. Curr Neurol Neurosci Rep 2013; 13: 339 doi: 10.1007/s11910-013-0339-2
  • 56 Potruch A, Khoury ST, Ilan Y. The role of chronobiology in drug-resistance epilepsy: The potential use of a variability and chronotherapy-based individualized platform for improving the response to anti-seizure drugs. Seizure 2020; 80: 201-211 doi: 10.1016/j.seizure.2020.06.032
  • 57 Karoly PJ, Ung H, Grayden DB. et al. The circadian profile of epilepsy improves seizure forecasting. Brain 2017; 140: 2169-2182
  • 58 Beniczky S, Wiebe S, Jeppesen J. et al (im Druck) Automated seizure detection using wearable devices: a guideline of the International League against Epilepsy und International Federation of Clinical Neurophysiology.
  • 59 Thompson ME, Langer J, Kinfe M. Seizure detection watch improves quality of life for adolescents and their families. Epilepsy Behav 2019; 98 (PtA) 188-194
  • 60 De Cooman T, Varon C, Van de Vel A. et al. Adaptive nocturnal seizure detection using heart rate and low-complexity novelty detection. Seizure 2018; 59: 48-53
  • 61 De Cooman T, Vandecasteele K, Varon C. et al. Personalizing Heart Rate-Based Seizure Detection Using Supervised SVM Transfer Learning. Front Neurol 2020; 11: 145
  • 62 Arends J, Thijs RD, Gutter T. et al. Multimodal nocturnal seizure detection in a residential care setting: A long-term prospective trial. Neurology 2018; 91: e2010-e2019
  • 63 Boon P, Vonck K, van Rijckevorsel K. et al. A prospective, multicenter study of cardiac-based seizure detection to activate vagus nerve stimulation. Seizure 2015; 32: 52-61
  • 64 Nair DR, Laxer KD, Weber PB. et al. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology 2020; 95: e1244-e1256
  • 65 Meritam P, Ryvlin P, Beniczky S. User-based evaluation of applicability and usability of a wearable accelerometer device for detecting bilateral tonic-clonic seizures: A field study. Epilepsia 2018; 59 (Suppl 1): 48-52