Synthesis 2021; 53(12): 2057-2066
DOI: 10.1055/a-1370-1884
paper

Ultrasound-Promoted Synthesis of Spirocyclopropanes from Switchable Starting Materials via Azomethine Ylide [3+2]-Cycloaddition

Issa Yavari
a   Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran
,
Sara Sheikhi
a   Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran
,
Jamil Sheykhahmadi
a   Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran
,
Zohreh Taheri
a   Department of Chemistry, Tarbiat Modares University, PO Box 14115-175, Tehran, Iran
,
Mohammad Reza Halvagar
b   Department of Inorganic Chemistry, Chemistry and Chemical Engineering Research Center of Iran, PO Box 14335-186, Tehran, Iran
› Author Affiliations
We are grateful to the Research Council of Tarbiat Modares University for support of this work.


Abstract

An ultrasound-promoted green protocol to access a new series of spirocyclopropanes from indeno[1,2-b]quinoxaline derivatives and azomethine ylides, generated in situ from the iodine-catalyzed reaction of acetophenones as well as of 2-methylquinoline with pyridine in the presence of a base, is described. These transformations proceed via a spirocyclopropanation reaction followed by elimination of pyridine. Clear evidence for the structure of a spirocyclopropane-linked indenoquinoxaline derivative was obtained from single-crystal X-ray analysis. The most important feature of this reaction is the fact it forms three stereogenic centers, one of which is quaternary, with excellent selectivity.

Supporting Information



Publication History

Received: 30 July 2020

Accepted after revision: 22 January 2021

Accepted Manuscript online:
22 January 2021

Article published online:
15 February 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Brahmachari G, Mandal M, Karmakar I, Nurjamal K, Mandal B. ACS Sustainable Chem. Eng. 2019; 7: 6369
    • 1b Banerjee B. Ultrason. Sonochem. 2017; 35: 15
    • 1c Chen LH, Chung TW, Narhe BD, Sun CM. ACS Comb. Sci. 2016; 18: 162
  • 2 Nishtala VB, Nanubolu JB, Basavoju S. Res. Chem. Intermed. 2017; 43: 1365
    • 4a Hallett JP, Welton T. Chem. Rev. 2011; 111: 3508
    • 4b Lupacchini M, Mascitti A, Giachi G, Tonucci L, d’Alessandro N, Martinez J, Colacino E. Tetrahedron 2017; 73: 609
    • 4c Jaworski AA, Scheidt KA. J. Org. Chem. 2016; 81: 10145
    • 4d Li J.-T, Wang S.-X, Chen G.-F, Li T.-S. Curr. Org. Synth. 2005; 2: 415
    • 4e Zang H, Su Q, Mo Y, Cheng B.-W, Jun S. Ultrason. Sonochem. 2010; 17: 749
    • 5a Viegas-Junior C, Danuello A, da Silva Bolzani V, Barreiro EJ, Fraga CA. M. Curr. Med. Chem. 2007; 14: 1829
    • 5b Flick AC, Ding HX, Leverett CA, Kyne RE. Jr, Liu KK.-C, Fink SJ, O’Donnell CJ. J. Med. Chem. 2017; 60: 6480
    • 6a Sandhu S, Bansal Y, Silakari O, Bansal G. Bioorg. Med. Chem. 2014; 22: 3806
    • 6b Ivasiv V, Albertini C, Gonçalves AE, Rossi M, Bolognesi ML. Curr. Top. Med. Chem. 2019; 19: 1694
    • 8a Grygorenko OO, Radchenko DS, Volochnyuk DM, Tolmachev AA, Komarov IV. Chem. Rev. 2011; 111: 5506
    • 8b Liu H, Jia H, Wang B, Xiao Y, Guo H. Org. Lett. 2017; 19: 4714
    • 9a Huang F, Wu P, Yu Z. J. Org. Chem. 2020; 85: 4373
    • 9b Časar Z. Synthesis 2020; 52: 1315
    • 9c Phelan JP, Lang SB, Compton JS, Kelly CB, Dykstra R, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2018; 140: 8037
    • 9d Rapi Z, Nemcsok T, Grün A, Pálvölgyi Á, Samu G, Hessz D, Kubinyi M, Kállay M, Keglevich G, Bakó P. Tetrahedron 2018; 74: 3512
    • 9e Ebner C, Carreira EM. Chem. Rev. 2017; 117: 11651
    • 9f Carreras J, Caballero A, Pérez PJ. Angew. Chem. Int. Ed. 2018; 57: 2334
    • 10a Bezençon O, Heidmann B, Siegrist R, Stamm S, Richard S, Pozzi D, Corminboeuf O, Roch C, Kessler M, Ertel EA, Reymond I, Pfeifer T, de Kanter R, Toeroek-Schafroth M, Moccia LG, Mawet J, Moon R, Rey M, Capeleto B, Fournier E. J. Med. Chem. 2017; 60: 9769
    • 10b Elinson MN, Dorofeeva EO, Vereshchagin AN, Nasybullin RF, Egorov MP. Catal. Sci. Technol. 2015; 5: 2384
    • 10c Tollefson EJ, Erickson LW, Jarvo ER. J. Am. Chem. Soc. 2015; 137: 9760
  • 11 Contreras-Cruz DA, Sánchez-Carmona MA, Vengoechea-Gómez FA, Peña-Ortíz D, Miranda LD. Tetrahedron 2017; 73: 6146
    • 12a Palomba M, Rossi L, Sancineto L, Tramontano E, Corona A, Bagnoli L, Santi C, Pannecouque C, Tabarrini O, Marini F. Org. Biomol. Chem. 2016; 14: 2015
    • 12b Li JH, Feng TF, Du DM. J. Org. Chem. 2015; 80: 11369
    • 12c Cui S, Zhang Y, Wu Q. Chem. Sci. 2013; 4: 3421
    • 13a Liu M, Liu CF, Zhang J, Xu YJ, Dong L. Org. Chem. Front. 2019; 6: 664
    • 13b Yan X, Shao P, Song X, Zhang C, Lu C, Liu S, Li Y. Org. Biomol. Chem. 2019; 17: 2684
    • 14a Mei H, Pan G, Zhang X, Lin L, Liu X, Feng X. Org. Lett. 2018; 20: 7794
    • 14b Kuang Y, Shen B, Dai L, Yao Q, Liu X, Lin L, Feng X. Chem. Sci. 2018; 9: 688
    • 14c Wang L, Cao W, Mei H, Hu L, Feng X. Adv. Synth. Catal. 2018; 360: 4089
    • 14d Bartoli G, Bencivenni G, Dalpozzo R. Synthesis 2014; 46: 979
    • 14e Gazit A, App H, McMahon G, Chen J, Levitzki A, Bohmer FD. J. Med. Chem. 1996; 39: 2170
    • 15a Yavari I, Sheikhi S, Taheri Z, Halvagar MR. Monatsh. Chem. 2019; 150: 1825
    • 15b Yavari I, Naeimabadi M, Halvagar MR. Tetrahedron 2018; 74: 4145
    • 15c Yavari I, Naeimabadi M, Sheykhahmadi J, Bahemmat S, Halvagar MR. ChemistrySelect 2017; 2: 11370
    • 15d Yavari I, Naeimabadi M, Hosseinpour R, Halvagar MR. Synlett 2016; 27: 2601
  • 16 CCDC 1998193 (6a) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 17a Kumar A, Gupta G, Srivastava S. Org. Lett. 2011; 13: 6366
    • 17b Yaragorla S, Babu PV. Tetrahedron Lett. 2017; 58: 1879
  • 18 Alizadeh A, Mohammadi R, Bayat F, Zhu LG. Tetrahedron 2017; 73: 4433