Subscribe to RSS
DOI: 10.1055/a-1389-5416
Linking the Presence of Macular Oedema to Structural and Functional Alterations in Retinitis Pigmentosa
Verbindung zwischen Makulaödem und strukturellen und funktionellen Veränderungen bei Retinitis pigmentosaAbstract
Objective To investigate the association between the central retinal thickness (CRT), the retinal nerve fibre layer thickness (RNFL), and the functional alterations in retinitis pigmentosa (RP) patients.
Methods Forty-three patients with typical RP and nineteen age-matched controls, who underwent SD-OCT (macular and optic disc OCT protocols) and electrophysiology, were included. The RP group was divided into two subgroups: with clinical appearance of macular oedema (ME-RP; 30 eyes) and without macular oedema (no-ME; 44 eyes). Central retinal thickness OCT data were averaged in three zones (zone 1 [0°–3°], zone 2 [3°–8°], and zone 3 [8°–15°]) and were evaluated in relation to the RNFL thickness and electrophysiological data.
Results The ME-RP group showed increased CRT (zone 1) and RNFL thickness compared to the controls and no-ME-RP (p ≤ 0.002). The no-ME-RP group had reduced CRT thickness (all zones; p ≤ 0.018) compared to the controls and ME-RP, whereas the RNFL thickness in the no-ME-RP group was reduced only compared to the ME-RP group (p < 0.001). The ME-RP group showed significantly more attenuated functional responses than the no-ME-RP patients. A significant positive interaction was found between the CRT (zones 1 and 2) and the RNFL thickness within ME-RP (p ≤ 0.010). Significant negative interactions were found between CRT, RNFL thickness, and functional findings within ME-RP (p ≤ 0.049).
Conclusion The presence of macular oedema correlated well with increased RNFL thickness and residual function in RP patients. Such association provides evidence of an underlying transneuronal mechanism of retinal degeneration. Simultaneous monitoring of CRT and RNFL thickness may help in the future to evaluate the progression of the disease and the efficacy of treatments in RP patients.
Zusammenfassung
Ziel Zusammenhang zwischen zentraler Netzhautdicke (CRT) und retinaler Nervenfaserschichtdicke (RNFL) und Funktion bei Patienten mit Retinitis pigmentosa (RP).
Methode Eingeschlossen wurden Patienten mit typischer RP und eine altersgleiche Kontrollgruppe, die sich einem SD-OCT (Makula- und Sehnervenkopf-OCT) und Elektrophysiologie unterzogen. Die RP-Gruppe wurde in 2 Untergruppen aufgeteilt: mit klinischem Erscheinungsbild eines Makulaödems (ME-RP; 30 Augen) und ohne Makulaödem (no-ME; 44 Augen). Die Daten des Makula-OCT wurden in 3 Zonen (Zone 1 [0°–3°], Zone 2 [3°–8°] und Zone 3 [8°–15°]) gemittelt und in Bezug auf die RNFL-Dicke und elektrophysiologischen Daten ausgewertet.
Ergebnisse Die ME-RP-Gruppe zeigte eine erhöhte zentrale retinale Dicke (CRT) (Zone 1) und retinale Nervenfaserschichtdicke (RNFL) im Vergleich zur Kontroll- und no-ME-RP-Gruppe (p ≤ 0,002). Bei der Gruppe no-ME-RP war die CRT-Dicke (aller Zonen; p ≤ 0,018) im Vergleich zu den Kontrollen und der ME-RP reduziert, während die RNFL-Dicke in der Gruppe no-ME-RP nur im Vergleich zur ME-RP-Gruppe reduziert war (p < 0,001). Die ME-RP-Gruppe zeigte verglichen zu den no-ME-RP-Patienten eine signifikante Abschwächung der funktionellen Parameter. Es wurde eine signifikante positive Interaktion zwischen der CRT (Zone 1 und 2) und der RNFL-Dicke innerhalb der ME-RP-Gruppe gefunden (p ≤ 0,010). Signifikante negative Interaktionen wurden zwischen CRT-Dicke, RNFL-Dicke und funktionellen Veränderungen innerhalb der ME-RP-Gruppe (p ≤ 0,049) gefunden.
Schlussfolgerung Das Vorliegen eines Makulaödems korrelierte gut mit der Zunahme der RNFL-Dicke und residueller Funktion bei RP-Patienten. Eine solche Assoziation liefert Hinweise auf einen gemeinsam zugrunde liegenden transneuronalen Mechanismus der Netzhautdegeneration. Die gleichzeitige Überwachung der CRT- und RNFL-Dicke könnte in Zukunft helfen, das Fortschreiten der Krankheit und die Wirksamkeit von Behandlungen bei RP-Patienten zu beurteilen.
Key words
macular oedema - optical coherence tomography - retinitis pigmentosa - central retinal thickness - retinal nerve fibre layer thickness - retinal functionSchlüsselwörter
Makulaödem - optische Kohärenztomografie - Retinitis pigmentosa - zentrale Retinadicke - zentrale Nervenfaserschichtdicke - NetzhautfunktionPublication History
Received: 25 September 2020
Accepted: 25 January 2021
Article published online:
14 April 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Liew G, Michaelides M, Bunce C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open 2014; 4: e004015 doi:10.1136/bmjopen-2013-004015
- 2 Finger RP, Fimmers R, Holz FG. et al. Prevalence and causes of registered blindness in the largest federal state of Germany. Br J Ophthalmol 2011; 95: 1061-1067 doi:10.1136/bjo.2010.194712
- 3 Keeffe JE, McCarty CA, Hassell JB. et al. Description and measurement of handicap caused by vision impairment. Aust N Z J Ophthalmol 1999; 27: 184-186 doi:10.1046/j.1440-1606.1999.00179.x
- 4 Ammann F, Klein D, Franceschetti A. Genetic and epidemiological investigations on pigmentary degeneration of the retina and allied disorders in Switzerland. J Neurol Sci 1965; 2: 183-196 doi:10.1016/0022-510x(65)90079-1
- 5 Puech B, Kostrubiec B, Hache JC. et al. Epidemiology and prevalence of hereditary retinal dystrophies in the Northern France. J Fr Ophtalmol 1991; 14: 153-164
- 6 Hamel C. Retinitis pigmentosa. Orphanet J Rare Dis 2006; 11: 40 doi:10.1186/1750-1172-1-40
- 7 Hamel C. Cone rod dystrophies. Orphanet J Rare Dis 2007; 1: 7 doi:10.1186/1750-1172-2-7
- 8 Michaelides M, Hunt DM, Moore AT. The genetics of inherited macular dystrophies. J Med Genet 2003; 40: 641-650 doi:10.1136/jmg.40.9.641
- 9 Hajali M, Fishman GA, Anderson RJ. The prevalence of cystoid macular oedema in retinitis pigmentosa patients determined by optical coherence tomography. Br J Ophthalmol 2008; 92: 1065-1068 doi:10.1136/bjophthalmol-2018-311964
- 10 Testa F, Rossi S, Colucci R. et al. Macular abnormalities in Italian patients with retinitis pigmentosa. Br J Ophthalmol 2014; 98: 946-950 doi:10.1136/bjo.2008.138560
- 11 Adackapara CA, Sunness JS, Dibernardo CW. et al. Prevalence of cystoid macular edema and stability in oct retinal thickness in eyes with retinitis pigmentosa during a 48-week lutein trial. Retina 2008; 28: 103-110 doi:10.1097/IAE.0b013e31809862aa
- 12 Ozdemir H, Karacorlu M, Karacorlu S. Intravitreal triamcinolone acetonide for treatment of cystoid macular oedema in patients with retinitis pigmentosa. Acta Ophthalmol Scand 2005; 83: 248-251 doi:10.1111/j.1600-0420.2005.00395.x
- 13 Jones BW, Kondo M, Terasaki H. et al. Retinal remodeling. Jpn J Ophthalmol 2012; 56: 289-306 doi:10.1007/s10384-012-0147-2
- 14 Jones BW, Marc RE. Retinal remodeling during retinal degeneration. Exp Eye Res 2005; 81: 123-137 doi:10.1016/j.exer.2005.03.006
- 15 Nuzbrokh Y, Kassotis AS, Ragi SD. et al. Treatment-Emergent Adverse Events in Gene Therapy Trials for Inherited Retinal Diseases: A Narrative Review. Ophthalmol Ther 2020; 9: 709-724 doi:10.1007/s40123-020-00287-1
- 16 Moore SM, Skowronska-Krawczyk D, Chao DL. Targeting of the NRL Pathway as a Therapeutic Strategy to Treat Retinitis Pigmentosa. J Clin Med 2020; 9: 2224 doi:10.3390/jcm9072224
- 17 Konieczka K, Bojinova R, Valmaggia C. et al. Preserved functional and structural integrity of the papillomacular area correlates with better visual acuity in retinitis pigmentosa. Eye (Lond) 2016; 30: 1310-1323 doi:10.1038/eye.2016.136
- 18 Vingolo EM, De Rosa V, Rigoni E. Clinical correlation between retinal sensitivity and foveal thickness in retinitis pigmentosa patients. Eur J Ophthalmol 2017; 27: 352-356 doi:10.5301/ejo.5000904
- 19 Sayman Muslubas I, Karacorlu M, Arf S. et al. Features of the macula and central visual field and fixation pattern in patients with retinitis pigmentosa. Retina 2018; 38: 424-431 doi:10.1097/IAE.0000000000001532
- 20 Aizawa S, Mitamura Y, Baba T. Correlation between visual function and photoreceptor inner/outer segment junction in patients with retinitis pigmentosa. Eye (Lond) 2009; 23: 304-308 doi:10.1038/sj.eye.6703076
- 21 Kim YJ, Joe SG, Lee DH. et al. Correlations between spectral-domain OCT measurements and visual acuity in cystoid macular edema associated with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2013; 54: 1303-1309 doi:10.1167/iovs.12-10149
- 22 Mitamura Y, Mitamura-Aizawa S, Katome T. et al. Photoreceptor impairment and restoration on optical coherence tomographic image. J Ophthalmol 2013; 2013: 518170 doi:10.1155/2013/518170
- 23 Oishi A, Otani A, Sasahara M. et al. Photoreceptor integrity and visual acuity in cystoid macular oedema associated with retinitis pigmentosa. Eye (Lond) 2009; 23: 1411-1416 doi:10.1038/eye.2008.266
- 24 Bojinova RI, Türksever C, Schötzau A. et al. Reduced metabolic function and structural alterations in inherited retinal dystrophies: investigating the effect of peripapillary vessel oxygen saturation and vascular diameter on the retinal nerve fibre layer thickness. Acta Ophthalmol 2017; 95: 252-261 doi:10.1111/aos.13247
- 25 Todorova MG, Scholl HPN, Della Volpe Waizel M. The impact of macular edema on microvascular and metabolic alterations in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2021; 259: 643-652 doi:10.1007/s00417-020-04913-3
- 26 Walia S, Fishman GA, Edward DP. et al. Retinal nerve fiber layer defects in RP patients. Invest Ophthalmol Vis Sci 2007; 48: 4748-4752 doi:10.1167/iovs.07-0404
- 27 Hood DC, Lin CE, Lazow MA. et al. Thickness of receptor and post-receptor retinal layers in patients with retinitis pigmentosa measured with frequency-domain optical coherence tomography. Invest Ophthalmol Vis Sci 2009; 50: 2328-2336 doi:10.1167/iovs.08-2936
- 28 Anastasakis A, Genead MA, McAnany JJ. et al. Evaluation of retinal nerve fiber layer thickness in patients with retinitis pigmentosa using spectral-domain optical coherence tomography. Retina 2012; 32: 358-363 doi:10.1097/IAE.0b013e31821a891a
- 29 Xue K, Wang M, Chen J. et al. Retinal nerve fiber layer analysis with scanning laser polarimetry and RTVue-OCT in patients of retinitis pigmentosa. Ophthalmologica 2013; 229: 38-42 doi:10.1159/000337227
- 30 Marmor MF, Fulton AB, Holder GE. et al. ISCEV Standard for full-field clinical electroretinography (2008 update). Doc Ophthalmol 2009; 118: 69-77 doi:10.1007/s10633-008-9155-4
- 31 Türksever C, Orgül S, Todorova MG. Comparing Short-Duration Electro-Oculograms with and without Mydriasis in Healthy Subjects. Klin Monbl Augenheilkd 2015; 232: 471-476 doi:10.1055/s-0034-1396330
- 32 Sandberg MA, Brockhurst RJ, Gaudio AR. et al. The association between visual acuity and central retinal thickness in retinitis pigmentosa. Invest Ophthalmol Vis Sci 2005; 46: 3349-3354 doi:10.1167/iovs.04-1383
- 33 Mitamura Y, Mitamura-Aizawa S, Nagasawa T. et al. Diagnostic imaging in patients with retinitis pigmentosa. J Med Invest 2012; 59: 1-11 doi:10.2152/jmi.59.1
- 34 Iriyama A, Yanagi Y. Fundus autofluorescence and retinal structure as determined by spectral domain optical coherence tomography, and retinal function in retinitis pigmentosa. Graefes Arch Clin Exp Ophthalmol 2012; 250: 333-339 doi:10.1007/s00417-011-1823-5
- 35 Fishman GA. Electrophysiology and inherited retinal disorders. Doc Ophthalmol 1985; 60: 107-119 doi:10.1007/BF00158025
- 36 Gouras P, Carr RE. Electrophysiological studies in early retinitis pigmentosa. Arch Ophthalmol 1964; 72: 104-110 doi:10.1001/archopht.1964.00970020106022
- 37 Birch DG, Sandberg MA. Dependence of cone b-wave implicit time on rod amplitude in retinitis pigmentosa. Vision Res 1987; 27: 1105-1112 doi:10.1016/0042-6989(87)90025-3
- 38 Sandberg MA, Weigel-DiFranco C, Rosner B. et al. The relationship between visual field size and electroretinogram amplitude in retinitis pigmentosa. Invest Ophthalmol Vis Sci 1996; 37: 1693-1698
- 39 Gartner S, Henkind P. Aging and degeneration of the human macula. 1. Outer nuclear layer and photoreceptors. Br J Ophthalmol 1981; 65: 23-28 doi:10.1136/bjo.65.1.23
- 40 Jones BW, Watt CB, Frederick JM. et al. Retinal remodeling triggered by photoreceptor degenerations. J Comp Neurol 2003; 464: 1-16 doi:10.1002/cne.10703
- 41 Marc RE, Jones BW, Watt CB. et al. Neural remodeling in retinal degeneration. Prog Retin Eye Res 2003; 22: 607-655 doi:10.1016/s1350-9462(03)00039-9
- 42 Marc RE, Jones BW. Retinal remodeling in inherited photoreceptor degenerations. Mol Neurobiol 2003; 28: 139-147 doi:10.1385/MN:28:2:139
- 43 Yanoff M, Fine BS, Brucker AJ. et al. Pathology of human cystoid macular edema. Surv Ophthalmol 1984; 28: 505-511 doi:10.1016/0039-6257(84)90233-9
- 44 Milam AH, Li ZY, Fariss RN. Histopathology of the human retina in retinitis pigmentosa. Prog Retin Eye Res 1998; 17: 175-205 doi:10.1016/s1350-9462(97)00012-8
- 45 Panfoli I, Calzia D, Bianchini P. et al. Evidence for aerobic metabolism in retinal rod outer segment disks. Int J Biochem Cell Biol 2009; 41: 2555-2565 doi:10.1016/j.biocel.2009.08.013
- 46 Li ZY, Kljavin IJ, Milam AH. Rod photoreceptor neurite sprouting in retinitis pigmentosa. J Neurosci 1995; 15: 5429-5438 doi:10.1523/JNEUROSCI.15-08-05429.1995
- 47 Jones BW, Pfeiffer RL, Ferrell WD. et al. Retinal remodeling in human retinitis pigmentosa. Exp Eye Res 2016; 150: 149-165 doi:10.1016/j.exer.2016.03.018
- 48 Komeima K, Rogers BS, Lu L. et al. Antioxidants reduce cone cell death in a model of retinitis pigmentosa. Proc Natl Acad Sci U S A 2006; 103: 11300-11305 doi:10.1073/pnas.0604056103
- 49 Fischer MD, Fleischhauer JC, Gillies MC. et al. A new method to monitor visual field defects caused by photoreceptor degeneration by quantitative optical coherence tomography. Invest Ophthalmol Vis Sci 2008; 49: 3617-3621 doi:10.1167/iovs.08-2003
- 50 Sugita T, Kondo M, Piao CH. et al. Correlation between macular volume and focal macular electroretinogram in patients with retinitis pigmentosa. Invest Ophthalmol Vis Sci 2008; 49: 3551-3558 doi:10.1167/iovs.08-1954
- 51 Cox SN, Hay E, Bird AC. Treatment of chronic macular edema with acetazolamide. Arch Ophthalmol 1988; 106: 1190-1195 doi:10.1001/archopht.1988.01060140350030
- 52 Strong S, Liew G, Michaelides M. Retinitis pigmentosa-associated cystoid macular oedema: pathogenesis and avenues of intervention. Br J Ophthalmol 2017; 10: 31-37 doi:10.1136/bjophthalmol-2016-309376
- 53 Heckenlively JR, Jordan BL, Aptsiauri N. Association of antiretinal antibodies and cystoid macular edema in patients with retinitis pigmentosa. Am J Ophthalmol 1999; 127: 565-573 doi:10.1016/s0002-9394(98)00446-2
- 54 Makiyama Y, Oishi A, Otani A. Prevalence and spatial distribution of cystoid spaces in retinitis pigmentosa: investigation with spectral domain optical coherence tomography. Retina 2014; 34: 981-988 doi:10.1097/IAE.0000000000000010
- 55 Szamier RB, Berson EL. Histopathologic study of an unusual form of retinitis pigmentosa. Invest Ophthalmol Vis Sci 1982; 22: 559-570
- 56 Asakawa K, Ishikawa H, Uga S. et al. Histopathological Changes of Inner Retina, Optic Disc, and Optic Nerve in Rabbit with Advanced Retinitis Pigmentosa. Neuroophthalmology 2016; 40: 286-291 doi:10.1080/01658107.2016.1229339
- 57 Abegg M, Dysli M, Wolf S. et al. Microcystic macular edema: retrograde maculopathy caused by optic neuropathy. Ophthalmology 2014; 121: 142-149 doi:10.1016/j.ophtha.2013.08.045
- 58 Abegg M, Zinkernagel M, Wolf S. Microcystic macular degeneration from optic neuropathy. Brain 2012; 135: e225 doi:10.1093/brain/aws215