Int J Sports Med 2021; 42(12): 1113-1121
DOI: 10.1055/a-1393-6472
Training & Testing

Cardiac Autonomic Modulation of Heart Rate Recovery in Children with Spina Bifida

Marisa Maia Leonardi-Figueiredo
1   Departamento Ciências da Saúde, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
,
Gabriela Barroso de Queiroz Davoli
1   Departamento Ciências da Saúde, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
,
Amanda Evangelista Avi
1   Departamento Ciências da Saúde, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
,
Julio Cesar Crescêncio
2   Departamento Clínica Médica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
,
Silvia Cristina Moura-Tonello
3   Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, Brazil
,
Paulo Henrique Manso
4   Departamento de Puericultura e Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
,
Lourenço Gallo Júnior
5   Departamento de Medicina Social, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
,
Edson Zangiacomi Martinez
5   Departamento de Medicina Social, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
,
Aparecida Maria Catai
3   Departamento de Fisioterapia, Universidade Federal de São Carlos, São Carlos, Brazil
,
Ana Claudia Mattiello-Sverzut
1   Departamento Ciências da Saúde, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
› Author Affiliations
Funding Information The Fundação de Amparo a Pesquisa do Estado de São Paulo – FAPESP financed this research (process number: 2019/22718-7 and 2017/17596-4). The Conselho Nacional de Desenvolvimento Científico e Tecnológico financed this research (process number: 309058/2018-0). The Coordenação de Aperfeiçoamento de Pessoal de Nível Superior financed this research (process number: 001).

Abstract

We aimed to analyse cardiac autonomic control by assessing the post-exercise heart rate recovery (HRR) and physical fitness in children and adolescents with spina bifida (SB), compared to participants with typical development. A total of 124 participants, 42 with spina bifida (SB group) and 82 typical developmental controls (CO group) performed the arm cranking exercise test with a gas analysis system. HRR was determined at the first (HRR_1) and second (HRR_2) minute at recovery phase. Data are shown as [mean difference (95% CI)]. The SB group showed reduced HR reserve [14.5 (7.1–22.0) bmp, P<0.01], slower HRR_1 [12.4 (7.4–17.5) bpm, P<0.01] and HRR_2 [16.3 (10.6–21.9) bpm; P<0.01], lower VO2peak [VO2peak relative: 7.3 (4.2–10.3) mL·min−1·kg−1, P<0.01; VO2peak absolute: 0.42 (0.30–0.54) L·min−1, P<0.01], and lower O2 pulse [2.5 (1.8–3.2) mL·bpm, P<0.01] and ventilatory responses [13.5 (8.8–18.1) L·min−1, P<0.01] than the CO group. VE/VO2 was not different between groups [−2.82 (−5.77– −0.12); P=0.06], but the VE/VCO2 [−2.59 (−4.40–0.78); P<0.01] and the values of the anaerobic threshold corrected by body mass [−3.2 (−5.8– −0.6) mL·min−1·kg−1, P=0.01] were higher in the SB group than in the CO group. We concluded that children and adolescents with SB have reduced physical fitness and a slower HRR response after maximal effort.

Supplementary Material



Publication History

Article published online:
22 April 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Okutucu S, Karakulak UN, Aytemir K. et al. Heart rate recovery: A practical clinical indicator of abnormal cardiac autonomic function. Expert Rev Cardiovasc Ther 2011; 9: 1417-1430
  • 2 Coolbaugh CL, Anderson IB, Wilson MD. et al. Evaluation of an exercise field test using heart rate monitors to assess cardiorespiratory fitness and heart rate recovery in an asymptomatic population. PLoS One 2014; 9: e97704
  • 3 La Rovere MT, Pinna GD, Maestri R. et al. Short-term heart rate variability strongly predicts sudden cardiac death in chronic heart failure patients. Circulation 2003; 107: 565-570
  • 4 Lazic JS, Dekleva M, Soldatovic I. et al. Heart rate recovery in elite athletes: the impact of age and exercise capacity 2017; 117-123
  • 5 Figoni SF. Exercise responses and quadriplegia. Med Sci Sports Exerc 1993; 25: 433-441
  • 6 Buffart LM, van den Berg-Emons RJG, van Wijlen-Hempel MS. et al. Health-related physical fitness of adolescents and young adults with myelomeningocele. Eur J Appl Physiol 2008; 103: 181-188
  • 7 van den Berg-Emons HJ, Bussmann JB, Brobbel AS. et al. Everyday physical activity in adolescents and young adults with meningomyelocele as measured with a novel activity monitor. J Pediatr 2001; 139: 880-886
  • 8 Hansen SE, Hasselstrøm H, Grønfeldt V. et al. Cardiovascular disease risk factors in 6-7-year-old Danish children: the Copenhagen School Child Intervention Study. Prev Med 2005; 40: 740-746
  • 9 Tollerz LUB, Olsson RM, Forslund AH. et al. Reliability of energy cost calculations in children with cerebral palsy, cystic fibrosis and healthy controls. Acta Paediatr 2011; 100: 1616-1620
  • 10 Veijalainen A, Haapala EA, Väistö J. et al. Associations of physical activity, sedentary time, and cardiorespiratory fitness with heart rate variability in 6- to 9-year-old children: the PANIC study. Eur J Appl Physiol 2019; 119: 2487-2498
  • 11 Meneghelo R, Araújo C, Stein R. et al. III Diretrizes da Sociedade Brasileira de Cardiologia sobre teste ergométrico. Arq Bras Cardiol 2010; 95: 1-26
  • 12 Mesquita ET, Jorge AJL. Entendendo a disfunção diastólica assintomática na prática clínica. Arq Bras Cardiol 2013; 100: 94-101
  • 13 Cooper DM, Leu S-Y, Galassetti P. et al. Dynamic interactions of gas exchange, body mass, and progressive exercise in children. Med Sci Sports Exerc 2014; 46: 877-886
  • 14 Leonardi-Figueiredo MM, de Souza HCD, Martins EJ. et al. Damaged cardiovascular autonomic control in wheelchair-using children and adolescents with myelomeningocele: a case–control study. Braz J Phys Ther 2019; 23: 27-32
  • 15 Bloemen MAT, van den Berg-Emons RJG, Tuijt M. et al. Physical activity in wheelchair-using youth with spina bifida: An observational study. J Neuroeng Rehabil 2019; 16: 9
  • 16 Harriss DJ, MacSween A, Atkinson G. Ethical standards in sport and exercise science research: 2020 update. Int J Sports Med 2019; 40: 813-817
  • 17 Rotenstein D, Adams M, Reigel DH. Adult stature and anthropomorphic measurements of patients with myelomeningocele. Eur J Pediatr 1995; 154: 398-402
  • 18 Dosa NP, Foley JT, Eckrich M. et al. Obesity across the lifespan among persons with spina bifida. Disabil Rehabil 2009; 31: 914-920
  • 19 Guedes DP, Guedes JERP. Medida da atividade física em jovens brasileiros: Reprodutibilidade e validade do PAQ-C e do PAQ-A. Rev Bras Med Esporte 2015; 21: 425-432
  • 20 Tanner JM. Growth at Adolescence, 2nd Ed. Oxford: Blackwell Scientific Publications. 1962
  • 21 Fess EE, Moran CA. Clinical Assessment Recommendations. American Society of Hand Therapists. 1981
  • 22 Takken T, Bongers BC, van Brussel M. et al. Cardiopulmonary Exercise Testing in Pediatrics. Ann Am Thorac Soc 2017; 14: S123-S128
  • 23 Novais L, Silva E, Simões R. et al. Anaerobic Threshold by Mathematical Model in Healthy and Post-Myocardial Infarction Men. Int J Sports Med 2015; 37: 112-118
  • 24 Van Brussel M, Bongers BC, Hulzebos EHJ. et al. A systematic approach to interpreting the cardiopulmonary exercise test in pediatrics. Pediatr Exerc Sci 2019; 31: 194-203
  • 25 Rowland TW. Developmental Exercise Physiology. Human Kinetics Publishers, Champaign, United States: 1996
  • 26 Bloemen MAT. Physical Fitness and Physical Behavior in (Wheelchair-using) Youth with Spina Bifida. PhD Dissertation, Utrecht University. 2017
  • 27 Ahmadian M, Roshan VD, Hosseinzadeh M. Parasympathetic reactivation in children: influence of two various modes of exercise. Clin Auton Res 2015; 25: 207-212
  • 28 Iwasaki KI, Zhang R, Zuckerman JH. et al. Effect of head-down-tilt bed rest and hypovolemia on dynamic regulation of heart rate and blood pressure. Am J Physiol Regul Integr Comp Physiol 2000; 279: R2189-R2199
  • 29 Buker DB, Oyarce CC, Plaza RS. Effects of spinal cord injury in heart rate variability after acute and chronic exercise: A systematic review. Top Spinal Cord Inj Rehabil 2018; 24: 167-176
  • 30 García-Hermoso A, Ramírez-Campillo R, Izquierdo M. Is muscular fitness associated with future health benefits in children and adolescents? A systematic review and meta-analysis of longitudinal studies. Sports Med 2019; 49: 1079-1094
  • 31 Souza W, Plavnik F. et al. Hipertensão na criança e no adolescente. Arq Bras Cardiol 2016; 107: 53-63
  • 32 Peçanha T, Silva-Júnior ND, Forjaz CL. et al. Heart rate recovery: autonomic determinants, methods of assessment and association with mortality and cardiovascular diseases. Clin Physiol Funct Imaging 2014; 34: 327-339
  • 33 Cole CR, Blackstone EH, Pashkow FJ. et al. Heart-rate recovery immediately after exercise as a predictor of mortality. N Engl J Med 1999; 341: 1351-1357
  • 34 Qiu S, Cai X, Sun Z. et al. Heart rate recovery and risk of cardiovascular events and all-cause mortality: a meta-analysis of prospective cohort studies. J Am Heart Assoc 2017; 6: e005505
  • 35 Morise AP. Heart rate recovery: predictor of risk today and target of therapy tomorrow?. Circulation 2004; 110: 2778-2780
  • 36 Ohuchi H, Suzuki H, Yasuda K. et al. Heart rate recovery after exercise and cardiac autonomic nervous activity in children. Pediatr Res 2000; 47: 329-335
  • 37 Singh TP, Rhodes J, Gauvreau K. Determinants of heart rate recovery following exercise in children. Med Sci Sports Exerc 2008; 40: 601-605
  • 38 Serra-Añó P, Montesinos LL, Morales J. et al. Heart rate variability in individuals with thoracic spinal cord injury. Spinal Cord 2015; 53: 59-63
  • 39 Fu Q, Levine BD. Exercise and the autonomic nervous system. In: Buijs RM, Swaab DF, Eds. Handbook of Clinical Neurology. Elsevier 2013; 147-160
  • 40 Sampaio I, Palma H, Nascimento R. et al. Atividade esportiva na reabilitação. In: Greve J, Casalis M, Barros T. Diagnóstico e Tratamento da Lesão da Medula Espinal. São Paulo: Rocas; 2001
  • 41 Tuijtelaars JAM, Leonardi-Figuiredo MM, Crescencio J. et al. Cardiopulmonary exercise test using arm ergometry in children with spina bifida. Pediatr Phys Ther 2019; 31: 185-190
  • 42 De Backer IC, Singh-Grewal D, Helders PJM. et al. Can peak work rate predict peak oxygen uptake in children with juvenile idiopathic arthritis?. Arthritis Care Res (Hoboken) 2010; 62: 960-964
  • 43 Lin K-H, Lai J-S, Kao M-J. et al. Anaerobic threshold and maximal oxygen consumption during arm cranking exercise in paraplegia. Arch Phys Med Rehabil 1993; 74: 515-520
  • 44 Arena R, Myers J, Hsu L. et al. The minute ventilation/carbon dioxide production slope is prognostically superior to the oxygen uptake efficiency slope. J Card Fail 2007; 13: 462-469
  • 45 Patel J, Walker JL, Talwalkar VR. et al. Correlation of spine deformity, lung function, and seat pressure in spina bifida. Clin Orthop Relat Res 2011; 469: 1302-1307
  • 46 de Groot JF, Takken T, de Graaff S. et al. Treadmill testing of children who have spina bifida and are ambulatory: does peak oxygen uptake reflect maximum oxygen uptake?. Phys Ther 2009; 89: 679-687
  • 47 Martins EJ, Gastaldi AC, Davoli GBQ. et al. Decreased respiratory performance of children and adolescents with myelomeningocele who use a wheelchair – preliminary data. Braz J Med Biol Res 2019; 52: e8671
  • 48 Schneider DA, Sedlock DA, Gass E. et al. V˙O2peak and the gas-exchange anaerobic threshold during incremental arm cranking in able-bodied and paraplegic men. Eur J Appl Physiol Occup Physiol 1999; 80: 292-297
  • 49 Holloszy JO. Adaptation of skeletal muscle to endurance exercise. Med Sci Sports 1975; 7: 155-164
  • 50 Costill DL, Coyle E, Dalsky G. et al. Effects of elevated plasma FFA and insulin on muscle glycogen usage during exercise. J Appl Physiol Respir Environ Exerc Physiol 1977; 43: 695-699
  • 51 Turley KR. Cardiovascular responses to exercise in children. Sports Med 1997; 24: 241-257
  • 52 Rutenfranz J, Andersen KL, Seliger V. et al. Maximal aerobic power affected by maturation and body growth during childhood and adolescence. Eur J Pediatr 1982; 139: 106-112
  • 53 Rowland T, Goff D, Martel L. et al. Influence of cardiac functional capacity on gender differences in maximal oxygen uptake in children. Chest 2000; 117: 629-635
  • 54 Vinet A, Mandigout S, Nottin S. et al. Influence of body composition, hemoglobin concentration, and cardiac size and function of gender differences in maximal oxygen uptake in prepubertal children. Chest 2003; 124: 1494-1499 Im Internet: https://linkinghub.elsevier.com/retrieve/pii/S0012369216486988
  • 55 Winsley RJ, Fulford J, Roberts AC. et al. Sex difference in peak oxygen uptake in prepubertal children. J Sci Med Sport 2009; 12: 647-651
  • 56 Mc Narry MA, Farr C, Middlebrooke A. et al. Aerobic Function and muscle deoxygenation dynamics during ramp exercise in children. Med Sci Sports Exerc 2015; 47: 1877-1884
  • 57 Castilho SD, Barras Filho AA. Crescimento pós-menarca. Arq Bras Endocrinol Metab 2000; 44: 195-204
  • 58 Armstrong N, Welsman J. Sex-specific longitudinal modeling of youth peak oxygen uptake. Pediatr Exerc Sci 2019; 31: 204-212
  • 59 Engin A. The definition and prevalence of obesity and metabolic syndrome. 2017; 1-17
  • 60 Jouven X, Empana J-P, Schwartz PJ. et al. Heart-rate profile during exercise as a predictor of sudden death. N Engl J Med 2005; 352: 1951-1958