Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(13): 2293-2303
DOI: 10.1055/a-1395-4788
DOI: 10.1055/a-1395-4788
paper
Efficient Monofluoroalkylation of Thiophenols or Phenols with α-Bromo-α-Fluoroketones under Mild Conditions
We are grateful for financial support from the National Natural Science Foundation of China (Grant Nos. 21672151 and 21602136).
Abstract
An efficient nucleophilic substitution reaction between α-bromo-α-fluoroketones and thiophenols or phenols is reported for the synthesis of α-fluoro-β-ketosulfides or α-fluoro-β-ketone ethers in yields ranging from 78–93%. This method exhibits good functional group tolerance and a broad scope of nucleophilic substrates, including natural phenolic compounds.
Key words
monofluoroalkyltion - nucleophilic substitution - α-bromo-α-fluoroketones - α-fluoro-β-ketosulfides - α-fluoro-β-ketone ethersSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1395-4788.
- Supporting Information
Publication History
Received: 28 December 2020
Accepted after revision: 18 February 2021
Accepted Manuscript online:
18 February 2021
Article published online:
04 March 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 1b Hagmann WK. J. Med. Chem. 2008; 51: 4359
- 1c Shimizu M, Hiyama T. Angew. Chem. Int. Ed. 2005; 117: 218
- 1d O’Hagan D. Chem. Soc. Rev. 2008; 37: 308
- 1e Bégué JP, Delpon DB. Bioorganic and Medicinal Chemistry of Fluorine . John Wiley & Sons; Hoboken: 2008
- 2a Erickson JA, McLoughlin JI. J. Org. Chem. 1995; 60: 1626
- 2b Aráoz R, Anhalt E, René L, Denisot MA. B, Courvalin P, Badet B. Biochemistry 2000; 39: 15971
- 2c Romanenko VD, Kukhar VP. Chem. Rev. 2006; 106: 3868
- 2d Wang J, Liu H. Chin. J. Org. Chem. 2011; 31: 1785
- 2e Wang J, Roselló MS, Aceña JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
- 3a Ni C, Hu M, Hu J. Chem. Rev. 2015; 115: 765
- 3b Xu XH, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
- 3c Boyer J, Arnoult E, Medebielle M, Guillemont J, Unge J, Jochmans D. J. Med. Chem. 2011; 54: 7974
- 4a Hansch C, Leo A, Unger SH, Kim KH, Nikaitani D, Lien EJ. J. Med. Chem. 1973; 16: 1207
- 4b Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
- 4c Leroux F, Jeschke P, Schlosser M. Chem. Rev. 2005; 105: 827
- 4d Jeschke P, Baston E, Leroux FR. Mini-Rev. Med. Chem. 2007; 7: 1027
- 5a Jeschke P. ChemBioChem 2004; 5: 570
- 5b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 6 Helmich KE, Pereira JH, Gall DL, Heins RA, McAndrew RP, Bingman C, Deng K, Holland KC, Noguera DR, Simmons BA, Sale KL, Ralph J, Donohue TJ, Adams PD, Phillips GN. J. Biol. Chem. 2015; 291: 5234
- 7 Fluorine in Medicinal Chemistry and Chemical Biology. Ojima I. John Wiley & Sons; Chichester: 2009
- 8 Karagas MR, Cushing GL. Jr, Greenberg ER, Mott LA, Spencer SK, Nierenberg DW. Br. J. Cancer 2001; 85: 683
- 9 Khouzani HL, Poorheravi MR, Sadeghi MM, Caggiano L, Jackson RF. W. Tetrahedron 2008; 64: 7419
- 10 Hara S, Monoi M, Umemura R, Fuse C. Tetrahedron 2012; 68: 10145
- 11 Varun BV, Prabhu KR. J. Org. Chem. 2017; 82: 9525
- 12 Yuan WM, Eriksson L, Szabó KJ. Angew. Chem. Int. Ed. 2016; 55: 1
- 13 Liang JQ, Han J, Wu JJ, Wu PJ, Hu J, Hu F, Wu FH. Org. Lett. 2019; 21: 6844