Fortschr Neurol Psychiatr 2021; 89(07/08): 374-381
DOI: 10.1055/a-1397-6851
Übersichtsarbeit

MSProDiscuss – Entwicklung eines digitalen Tools zur standardisierten Patientenanamnese, um Progredienz bei Multipler Sklerose zu identifizieren

MSProDiscuss – Development of a Digital Anamnesis Tool to Identify Disease Progression in Multiple Sclerosis
Hernan Inojosa
1   Zentrum für klinische Neurowissenschaften, Klinik für Neurologie, Technische Universität Dresden/ Universitätsklinikum Dresden, Dresden, Deutschland
,
Katja Akgün
1   Zentrum für klinische Neurowissenschaften, Klinik für Neurologie, Technische Universität Dresden/ Universitätsklinikum Dresden, Dresden, Deutschland
,
Katrin Haacke
1   Zentrum für klinische Neurowissenschaften, Klinik für Neurologie, Technische Universität Dresden/ Universitätsklinikum Dresden, Dresden, Deutschland
,
Tjalf Ziemssen
1   Zentrum für klinische Neurowissenschaften, Klinik für Neurologie, Technische Universität Dresden/ Universitätsklinikum Dresden, Dresden, Deutschland
› Author Affiliations
Funding Diese Unterstützung wurde durch die Novartis Pharma GmbH finanziert. Das MSProDiscuss Werkzeug steht jedem Neurologen unter www.msprodiscuss.com zur Verfügung. Die Entwicklung des Werkzeugs mit Unterstützung von Adelphi wurde durch einen unrestricted grant von Novartis gefördert.

Zusammenfassung

Die Mehrheit der Patienten mit schubförmiger remittierender Multipler Sklerose (RRMS) konvertiert im langfristigen Verlauf ihrer Erkrankung zu einer sekundär-progredienten Verlaufsform (SPMS), die durch eine schubunabhängige Behinderungszunahme charakterisiert und mit einer deutlich schlechteren Prognose assoziiert ist. Aufgrund der Heterogenität der SPMS-Transition ist dieser Übergang nur schwer feststellbar, daher wird in der Regel eine SPMS-Diagnose nur retrospektiv und oft mit mehrjähriger Verzögerung gestellt. In dieser Übersichtsarbeit stellen wir Ansätze für eine frühere SPMS-Diagnose wie das SPMS-Nomogramm, den MS Prediction Score oder den Best Definition Ansatz vor, die beitragen könnten, die Phase der diagnostischen Unsicherheit zu verkürzen. Im Fokus dieser Übersichtsarbeit steht die Entwicklung von MSProDiscuss, einem neuen webbasierten Tool, durch das der Arzt systematisch und während der Routineanamnese alle progressionsrelevanten Parameter der Krankheitsaktivität, Symptomatik und täglichen Beeinträchtigungen aus Patientenperspektive erheben kann. In einer aktuellen Validierungsstudie zeigte MSProDiscuss eine hohe Sensitivität, Spezifität und Interrater-Reliabilität bei der Identifizierung von SPMS-Patienten und Patienten im SPMS-Übergang. Da MSProDiscuss aufgrund des geringen Zeitbedarfs zu keiner Mehrbelastung des behandelnden Neurologen führt und sein Ergebnis mittels eines einfachen Ampelsystems leicht interpretiert werden kann, wurde es in ersten Usability-Tests als äußerst hilfreiches diagnostisches Werkzeug für die neurologische Praxis bewertet. Die frühzeitige Identifizierung von signifikanter klinischer Progression durch diagnostische Tools wie MSProDiscuss könnte beitragen, ein Zeitfenster für mögliche therapeutische Interventionen zu öffnen.

Abstract

During the course of Multiple Sclerosis (MS), most patients with relapsing remitting MS (RRMS) convert to secondary progressive MS (SPMS), an MS-phenotype associated with a steady deterioration of functional ability independent from relapses and worsened prognosis. Due to the heterogeneity of this conversion, SPMS-diagnosis is often challenging and made retrospectively with a delay of several years. In this review, we first discuss advantages and limitations of screening tools for early SPMS-detection such as the SPMS nomogram, the MS prediction score, and the best SPMS definition approach. These screening tools might help to shorten the phase of diagnostic uncertainty. We then focus on the development of MSProDiscuss, a novel web-based tool that helps the treating neurologist to systematically assesses parameters highly relevant for SPMS-conversion during routine anamnesis. These parameters involve disease activity, symptoms, and impacts of the patient’s overall symptoms. In a recent validation study, MSProDiscuss demonstrated high sensitivity, specificity, and interrater reliability. MSProDiscuss does not impose an additional time burden on the treating neurologist and its results are easy to interpret by a simple traffic light system. In first usability tests, it was therefore assessed as a helpful tool for the clinical routine. The early detection of clinically significant progression by diagnostic tools such as MSProDiscuss could open a time-window for therapeutic interventions.



Publication History

Received: 28 September 2020

Accepted: 16 February 2021

Article published online:
15 March 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Mc Donald WI, Compston A, Edan G. et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121-127
  • 2 Scalfari A, Neuhaus A, Daumer M. et al. Onset of secondary progressive phase and long-term evolution of multiple sclerosis. J Neurol Neurosurg Psychiatry 2014; 85: 67-75
  • 3 [Anonym]. Setting new standards in multiple sclerosis care and research. Lancet Neurol 2012; 11: 835
  • 4 Lublin FD, Coetzee T, Cohen JA. et al. The 2013 clinical course descriptors for multiple sclerosis: A clarification. Neurology 2020; 94: 1088-1092
  • 5 Lassmann H, van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nat Rev Neurol 2012; 8: 647-656
  • 6 Kremenchutzky M, Rice GP, Baskerville J. et al. The natural history of multiple sclerosis: a geographically based study 9: observations on the progressive phase of the disease. Brain 2006; 129: 584-594
  • 7 Koch M, Kingwell E, Rieckmann P. et al. The natural history of secondary progressive multiple sclerosis. J Neurol Neurosurg Psychiatry 2010; 81: 1039-1043
  • 8 Tremlett H, Yinshan Z, Devonshire V. Natural history of secondary-progressive multiple sclerosis. Mult Scler 2008; 14: 314-324
  • 9 Cree BAC, Hollenbach JA, Bove R. et al. Silent progression in disease activity-free relapsing multiple sclerosis. Ann Neurol 2019; 85: 653-666
  • 10 Davies F, Edwards A, Brain K. et al. ‘You are just left to get on with it’: qualitative study of patient and carer experiences of the transition to secondary progressive multiple sclerosis. BMJ Open 2015; 5: e007674
  • 11 Krieger SC, Cook K, De Nino S. et al. The topographical model of multiple sclerosis: A dynamic visualization of disease course. Neurol Neuroimmunol Neuroinflamm 2016; 3: e279
  • 12 Giovannoni G, Cutter G, Sormani MP. et al. Is multiple sclerosis a length-dependent central axonopathy? The case for therapeutic lag and the asynchronous progressive MS hypotheses. Mult Scler Relat Disord 2017; 12: 70-78
  • 13 Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983; 33: 1444-1452
  • 14 Inojosa H, Proschmann U, Akgün K. et al. A focus on secondary progressive multiple sclerosis (SPMS): challenges in diagnosis and definition. J Neurol 2021; 268: 1210-1221
  • 15 Katz Sand I. Classification, diagnosis, and differential diagnosis of multiple sclerosis. Curr Opin Neurol 2015; 28: 193-205.
  • 16 Skoog B, Tedeholm H, Runmarker B. et al. Continuous prediction of secondary progression in the individual course of multiple sclerosis. Mult Scler Relat Disord 2014; 3: 584-592
  • 17 Kleiter I, Ayzenberg I, Havla J. et al. The transitional phase of multiple sclerosis: Characterization and conceptual framework. Mult Scler Relat Disord 2020; 44: 102242
  • 18 Lorscheider J, Buzzard K, Jokubaitis V. et al. Defining secondary progressive multiple sclerosis. Brain 2016; 139: 2395-2405
  • 19 Inojosa H, Schriefer D, Ziemssen T. Clinical outcome measures in multiple sclerosis: A review. Autoimmun Rev 2020;
  • 20 Inojosa H, Proschmann U, Akguen K. et al. Should we use clinical tools to identify disease progression?. Front Neurol. 2021 11. 628542
  • 21 Ziemssen T, Tolley C, Bennett B. et al. A mixed methods approach towards understanding key disease characteristics associated with the progression from RRMS to SPMS: Physiciansʼ and patientsʼ views. Mult Scler Relat Disord 2019; 38: 101861
  • 22 Huijbregts SC, Kalkers NF, de Sonneville LM. et al. Differences in cognitive impairment of relapsing remitting, secondary, and primary progressive MS. Neurology 2004; 63: 335-339
  • 23 Santangelo G, Altieri M, Enzinger C. et al. Cognitive reserve and neuropsychological performance in multiple sclerosis: A meta-analysis. Neuropsychology 2019; 33: 379-390
  • 24 Ha JF, Longnecker N. Doctor-patient communication: a review. Ochsner J 2010; 10: 38-43
  • 25 O'Loughlin E, Hourihan S, Chataway J. et al. The experience of transitioning from relapsing remitting to secondary progressive multiple sclerosis: views of patients and health professionals. Disabil Rehabil 2017; 39: 1821-1828
  • 26 Bosma LV, Sonder JM, Kragt JJ. et al. Detecting clinically-relevant changes in progressive multiple sclerosis. Mult Scler 2015; 21: 171-179
  • 27 Kratz AL, Murphy SL, Braley TJ. Ecological Momentary Assessment of Pain, Fatigue, Depressive, and Cognitive Symptoms Reveals Significant Daily Variability in Multiple Sclerosis. Arch Phys Med Rehabil 2017; 98: 2142-2150
  • 28 Ziemssen T. Symptom management in patients with multiple sclerosis. J Neurol Sci 2011; 311 Suppl 1 S48-S52
  • 29 Midaglia L, Mulero P, Montalban X. et al. Adherence and Satisfaction of Smartphone- and Smartwatch-Based Remote Active Testing and Passive Monitoring in People With Multiple Sclerosis: Nonrandomized Interventional Feasibility Study. Journal of medical Internet research 2019; 21: e14863-e14863
  • 30 Maillart E, Labauge P, Cohen M. et al. MSCopilot, a new multiple sclerosis self-assessment digital solution: results of a comparative study versus standard tests. Eur J Neurol 2020; 27: 429-436
  • 31 Pratap A, Grant D, Vegesna A. et al. Evaluating the Utility of Smartphone-Based Sensor Assessments in Persons With Multiple Sclerosis in the Real-World Using an App (elevateMS): Observational, Prospective Pilot Digital Health Study. JMIR Mhealth Uhealth 2020; 8: e22108
  • 32 Schleimer E, Pearce J, Barnecut A. et al. A Precision Medicine Tool for Patients With Multiple Sclerosis (the Open MS BioScreen): Human-Centered Design and Development. J Med Internet Res 2020; 22: e15605
  • 33 Ziemssen T, Simsek D, Lahoz R. et al. Development of A Screening Tool to Support Identification of Patients With Secondary Progressive Multiple Sclerosis (Spms). Value in Health 2015; 18: A763
  • 34 Inojosa H, Ziemssen T. How to reduce the delay of diagnosing secondary progression in multiple sclerosis. Mult Scler. 2021; 27: 646–647. doi:10.1177/1352458520943799
  • 35 Giovannoni G, Butzkueven H, Dhib-Jalbut S. et al. Brain health: time matters in multiple sclerosis. Mult Scler Relat Disord 2016; 9 (Suppl. 01) S5-S48
  • 36 Manouchehrinia A, Zhu F, Piani-Meier D. et al. Predicting risk of secondary progression in multiple sclerosis: A nomogram. Mult Scler 2019; 25: 1102-1112
  • 37 Hobart J, Freeman J, Thompson A. Kurtzke scales revisited: the application of psychometric methods to clinical intuition. Brain 2000; 123 (Pt 5) 1027-1040
  • 38 Meyer-Moock S, Feng YS, Maeurer M. et al. Systematic literature review and validity evaluation of the Expanded Disability Status Scale (EDSS) and the Multiple Sclerosis Functional Composite (MSFC) in patients with multiple sclerosis. BMC Neurol 2014; 14: 58
  • 39 Tolley C, Piani-Meier D, Bentley S. et al. A Novel, Integrative Approach for Evaluating Progression in Multiple Sclerosis: Development of a Scoring Algorithm. JMIR Med Inform 2020; 8: e17592
  • 40 Ziemssen T, Piani-Meier D, Bennett B. et al. A Physician-Completed Digital Tool for Evaluating Disease Progression (Multiple Sclerosis Progression Discussion Tool): Validation Study. J Med Internet Res 2020; 22: e16932
  • 41 Inojosa H, Rauser B, Ettle B et al. The Transitional Phase of Multiple Sclerosis: The concept of PANGAEA 2.0 EVOLUTION Study. Multiple Sclerosis and Related Disorders 2020; 46: 102523. doi:10.1016/j.msard.2020.102523
  • 42 Ziemssen T, Hoffmann O, Klotz L. et al. Study Protocol of AMASIA, a Non-Interventional Study to Gain First Insights on SPMS Patients Treated With Siponimod in Clinical Routine. JMIR Res Protoc 2020; 9: e19598
  • 43 Cerqueira JJ, Compston DAS, Geraldes R. et al. Time matters in multiple sclerosis: can early treatment and long-term follow-up ensure everyone benefits from the latest advances in multiple sclerosis?. J Neurol Neurosurg Psychiatry 2018; 89: 844-850.
  • 44 Youden WJ. Index for rating diagnostic tests. Cancer 1950; 3: 32-35.
  • 45 Froud R, Abel G. Using ROC curves to choose minimally important change thresholds when sensitivity and specificity are valued equally: the forgotten lesson of pythagoras. theoretical considerations and an example application of change in health status. PLoS One 2014; 9: e114468.
  • 46 Fleiss JL. The standardization of rates. In Statistical Methods for Rates and Proportions. 3rd. Aufl. New Jersey: John Wiley & Sons; 2003: 627-647