Subscribe to RSS
DOI: 10.1055/a-1403-4613
Unlocking the Synthetic Potential of Light-Excited Aryl Ketones: Applications in Direct Photochemistry and Photoredox Catalysis
This work was supported by the Università degli Studi di Padova (University of Padova) (P-DiSC#11BIRD2020-UNIPD) and the Fondazione Cassa di Risparmio di Padova e Rovigo (CariParo Foundation) (Synergy, Progetti di Eccellenza 2018) (L.D). S.C. thanks the DiMED at UniPD for a postdoctoral fellowship.
Abstract
In this Account, we summarize the contributions of our group to the field of photochemistry and photocatalysis. Our work deals with the development of novel synthetic methods based on the exploitation of photoexcited aryl ketones. The application of new technologies, such as microfluidic photoreactors (MFPs), has enhanced the synthetic performance and scalability of several photochemical methods, e.g., Paternò–Büchi and photoenolization/Diels–Alder processes, while opening the way to unprecedented reactivity. In addition, careful mechanistic analysis of the developed methods has been instrumental in disclosing a new family of powerful organic photocatalysts that can mediate several thermodynamically extreme photoredox processes.
1 Introduction
1.1 Shining Light on Aryl Ketones: From the Historical Background to Recent Synthetic Applications
1.2 Preliminary Mechanistic Considerations
2 Synthetic Transformations Driven by Triplet State Benzophenones
3 Synthetic Transformations Driven by Triplet State o-Alkyl-Substituted Benzophenones
4 The Evolution of Aryl-Ketone-Derived Products: Applications in Organophotoredox Catalysis
5 Conclusions and Future Directions
Key words
synthetic photochemistry - photoredox catalysis - microfluidic photoreactions - carbonyl compounds - ketonesPublication History
Received: 16 February 2021
Accepted after revision: 02 March 2021
Accepted Manuscript online:
02 March 2021
Article published online:
12 April 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Dickens TK, Warren SG. Chemistry of the Carbonyl Group: A Step-by-Step Approach to Understanding Organic Reaction Mechanisms, 2nd ed. John Wiley & Sons; Hoboken: 2018
- 2a Seebach D. Angew. Chem., Int. Ed. Engl. 1979; 18: 239
- 2b Enders D, Han J, Henseler A. Chem. Commun. 2008; 3989
- 2c Liu Q, Perreault S, Rovis T. J. Am. Chem. Soc. 2008; 130: 14066
- 2d DiRocco DA, Rovis T. J. Am. Chem. Soc. 2011; 133: 10402
- 2e Jousseaume T, Wurz NE, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 1410
- 2f Chatgilialoglu C, Crich D, Komatsu M, Ryu I. Chem. Rev. 1999; 99: 1991
- 2g Goti G, Bieszczad B, Vega-Peñaloza A, Melchiorre P. Angew. Chem. Int. Ed. 2019; 58: 1213
- 3 Dantas JA, Correia JT. M, Paixão MW, Corrêa AG. ChemPhotoChem 2019; 3: 506
- 4a Elliott LD, Knowles JP, Koovits PJ, Maskill KG, Ralph MJ, Lejeune G, Edwards LJ, Robinson RI, Clemens IR, Cox B, Pascoe DD, Koch G, Eberle M, Berry MB, Booker-Milburn KI. Chem. Eur. J. 2014; 20: 15226
- 4b Plutschack MB, Pieber B, Gilmore K, Seeberger PH. Chem. Rev. 2017; 117: 11796
- 4c Fischer M. Angew. Chem., Int. Ed. Engl. 1978; 17: 16
- 4d Harper KC, Moschetta EG, Bordawekar SV, Wittenberger SJ. ACS Cent. Sci. 2019; 5: 109
- 4e Pomberger A, Mo Y, Namdiwale KY, Schultz VL, Duvadie R, Robinson RI, Altinoglu EI, Jensen KF. Org. Process Res. Dev. 2019; 23: 2699
- 5 Cambié D, Bottecchia C, Straathof NJ. W, Hessel V, Noël T. Chem. Rev. 2016; 116: 10276
- 6 Dormán G, Nakamura H, Pulsipher A, Prestwich GD. Chem. Rev. 2016; 116: 15284
- 7 Bürgi HB, Dunitz JD, Lehn JM, Wipff G. Tetrahedron 1974; 30: 1563
- 9a Turro NJ, Ramamurthy V, Scaiano JC. Modern Molecular Photochemistry of Organic Molecules. University Science Books; Sausalito (CA, USA): 2010
- 9b Klán P, Wirz J. Photochemistry of Organic Compounds: From Concepts to Practice. John Wiley & Sons; Chichester: 2009
- 9c Griesbeck AG, Mauder H, Stadtmüller S. Acc. Chem. Res. 1994; 27: 70
- 10 Oelgemöller M, Hoffmann N. Org. Biomol. Chem. 2016; 14: 7392
- 11a Paternò E, Chieffi G. Gazz. Chim. Ital. 1909; 39: 341
- 11b Büchi G, Inman CG, Lipinsky ES. J. Am. Chem. Soc. 1954; 76: 4327
- 11c Bach T. Synthesis 1998; 683
- 12a Yang NC, Loeschen RL, Mitchell D. J. Am. Chem. Soc. 1967; 89: 5465
- 12b Adam W, Stegmann VR. J. Am. Chem. Soc. 2002; 124: 3600
- 12c Griesbeck AG. J. Photosci. 2003; 10: 49
- 13 Fréneau M, Hoffmann N. J. Photochem. Photobiol., C 2017; 33: 83
- 14 Palmer IJ, Ragazos IN, Bernardi F, Olivucci M, Robb MA. J. Am. Chem. Soc. 1994; 116: 2121
- 15 Gersdorf J, Mattay J, Goerner H. J. Am. Chem. Soc. 1987; 109: 1203
- 16a Wuitschik G, Carreira EM, Wagner B, Fischer H, Parrilla I, Schuler F, Rogers-Evans M, Müller K. J. Med. Chem. 2010; 53: 3227
- 16b Bauer MR, Di Fruscia P, Lucas SC. C, Michaelides IN, Nelson JE, Storer RI, Whitehurst BC. RSC Med. Chem. 2021; 12 in press
- 17 Hung AW, Ramek A, Wang Y, Kaya T, Wilson JA, Clemons PA, Young DW. Proc. Natl. Acad. Sci. U.S.A. 2011; 108: 6799
- 18 Mateos J, Vega-Peñaloza A, Franceschi P, Rigodanza F, Andreetta P, Companyó X, Pelosi G, Bonchio M, Dell’Amico L. Chem. Sci. 2020; 11: 6532
- 19 McAtee RC, McClain EJ, Stephenson CR. J. Trends Chem. 2019; 1: 111
- 20 Franceschi P, Mateos J, Vega-Peñaloza A, Dell’Amico L. Eur. J. Org. Chem. 2020; 43: 6718
- 21 Sammes PG. Tetrahedron 1976; 32: 405
- 22 Yang NC, Rivas C. J. Am. Chem. Soc. 1961; 83: 2213
- 23a Zwicker EF, Grossweiner LI. J. Am. Chem. Soc. 1963; 85: 2671
- 23b Huffman KR, Loy M, Ullman EF. Tetrahedron Lett. 1965; 6: 5417
- 23c Porter G, Tchir MF. J. Chem. Soc. D 1970; 1372
- 23d Porter G, Tchir MF. J. Chem. Soc. A 1971; 3772
- 23e Lutz H, Bréhéret E, Lindqvist L. J. Chem. Soc., Faraday Trans. 1 1973; 69: 2096
- 23f Wagner PJ, Chen CP. J. Am. Chem. Soc. 1976; 98: 239
- 23g Haag R, Wirz J, Wagner PJ. Helv. Chim. Acta 1977; 60: 2595
- 23h Das PK, Scaiano JC. J. Photochem. 1980; 12: 85
- 23i Scaiano JC. Acc. Chem. Res. 1982; 15: 252
- 23j Guerin B, Johnston LJ. Can. J. Chem. 1989; 67: 473
- 23k Neto-Ferreira JC, Wintgens V, Scaiano JC. Can. J. Chem. 1994; 72: 1565
- 23l Suzuki T, Omori T, Ichimura T. J. Phys. Chem. A 2000; 104: 11671
- 24 Klán P, Wirz J, Gudmundsdottir A. Photoenolization and its Applications. CRC Handbook of Organic Photochemistry and Photobiology, 3rd ed. Griesbeck A, Oelgemöller M, Ghetti F. CRC Press; Boca Raton (FL, USA): 2012. Chap 26 627-652
- 25a Nicolaou KC, Gray D, Tae J. Angew. Chem. Int. Ed. 2001; 40: 3675
- 25b Nicolaou KC, Gray D, Tae J. Angew. Chem. Int. Ed. 2001; 40: 3679
- 25c Nicolaou KC, Gray DL. F, Tae J. J. Am. Chem. Soc. 2004; 126: 613
- 25d Yang B, Lin K, Shi Y, Gao S. Nat. Commun. 2017; 8: 622
- 25e Dell’Amico L, Vega Peñaloza A, Cuadros S, Melchiorre P. Angew. Chem. Int. Ed. 2016; 55: 3313
- 26a Grosch B, Orlebar CN, Herdtweck E, Massa W, Bach T. Angew. Chem. Int. Ed. 2003; 42: 3693 and reference 25d
- 26b For instance, endo products are the unique species observed when symmetric cyclic alkenes, with a forced Z geometry, are used as dienophiles (see references 21, 24 and 25e). In the case of acyclic E or Z dienophiles, mixtures of the endo and exo adducts are usually obtained (see references 25a–c and 26a,b). Nevertheless, in some specific cases, isomerization of the Z or E alkene under irradiation conditions has also been inferred (see references 25a,c), which can lead to the formation of more complex mixtures of diastereoisomers
- 27a Yuan X, Dong S, Liu Z, Wu G, Zou C, Ye J. Org. Lett. 2017; 19: 2322
- 27b Dell’Amico L, Fernández-Álvarez VM, Maseras F, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 3304
- 27c Paria S, Carletti E, Marcon M, Cherubini-Celli A, Mazzanti A, Rancan M, Dell’Amico L, Bonchio M, Companyó X. J. Org. Chem. 2020; 85: 4463
- 28 Hepburn HB, Magagnano G, Melchiorre P. Synthesis 2017; 49: 76
- 29 Cuadros S, Dell’Amico L, Melchiorre P. Angew. Chem. Int. Ed. 2017; 56: 11875
- 30 Masuda Y, Ishida N, Murakami M. J. Am. Chem. Soc. 2015; 137: 14063
- 31 Cuadros S, Melchiorre P. Eur. J. Org. Chem. 2018; 2884
- 32a Hiltebrandt K, Elies K, D’hooge DR, Blinco JP, Barner-Kowollik C. J. Am. Chem. Soc. 2016; 138: 7048
- 32b Pauloehrl T, Delaittre G, Winkler V, Welle A, Bruns M, Börner HG, Greiner AM, Bastmeyer M, Barner-Kowollik C. Angew. Chem. Int. Ed. 2012; 51: 1071
- 33a Winkler M, Mueller JO, Oehlenschlaeger KK, Montero De Espinosa L, Meier MA. R, Barner-Kowollik C. Macromolecules 2012; 45: 5012
- 33b Oehlenschlaeger KK, Mueller JO, Heine NB, Glassner M, Guimard NK, Delaittre G, Schmidt FG, Barner-Kowollik C. Angew. Chem. Int. Ed. 2013; 52: 762
- 34 Mateos J, Cherubini-Celli A, Carofiglio T, Bonchio M, Marino N, Companyó X, Dell’Amico L. Chem. Commun. 2018; 54: 6820
- 35 The MFP is composed of PTFE tubing (100 cm length, 0.75 mm internal diameter, 1.58 mm O.D) wrapped around the two branches of a U-shaped bulb lamp (9 W) having an emission maximum centered at 365 nm.
- 36a Wolff T, Gömer H. Phys. Chem. Chem. Phys. 2004; 6: 368
- 36b Yu X, Scheller D, Rademacher O, Wolff T. J. Org. Chem. 2003; 68: 7386
- 36c Pemberton BC, Barooah N, Srivatsava DK, Sivaguru J. Chem. Commun. 2010; 46: 225
- 36d Rao DV, Ulrich H, Stuber FA, Sayigh AA. R. Chem. Ber. 1973; 106: 388
- 37 Mateos J, Meneghini N, Bonchio M, Marino N, Carofiglio T, Companyó X, Dell’Amico L. Beilstein J. Org. Chem. 2018; 14: 2418
- 38 Wright PM, Seiple IB, Myers AG. Angew. Chem. Int. Ed. 2014; 53: 8840
- 39 Sandulache A, Silva AM. S, Cavaleiro JA. S. Tetrahedron 2002; 58: 105
- 40 Vega-Peñaloza A, Mateos J, Companyó X, Escudero-Casao M, Dell’Amico L. Angew. Chem. Int. Ed. 2021; 60: 1082
- 41 Mateos J, Rigodanza F, Vega-Peñaloza A, Sartorel A, Natali M, Bortolato T, Pelosi G, Companyó X, Bonchio M, Dell’Amico L. Angew. Chem. Int. Ed. 2020; 59: 1302
- 42 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 43a Ju X, Li W, Yu W, Bian F. Adv. Synth. Catal. 2012; 354: 3561
- 43b Liang Z, Xu S, Tian W, Zhang R. Beilstein J. Org. Chem. 2015; 11: 425
- 43c Chu L, Ohta C, Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
- 43d Capaldo L, Riccardi R, Ravelli D, Fagnoni M. ACS Catal. 2018; 8: 304
- 43e Nguyen JD, D’Amato EM, Narayanam JM. R, Stephenson CR. J. Nat. Chem. 2012; 4: 854
- 44 Discekici EH, Treat NJ, Poelma SO, Mattson KM, Hudson ZM, Luo Y, Hawker CJ, Read de Alaniz J. Chem. Commun. 2015; 51: 11705
The diastereoselective outcome of the photoenolization/[4+2]-cycloaddition process is dependent on the type of dienophile used. Considering that the only reactive diene is the (E)-2′ enol, and that the cycloaddition proceeds in a concerted fashion, the stereochemistry-defining event is the endo or exo approach of the dienophile to the (E)-photoenol. Accordingly, the judicious selection of the dienophile geometry can favor the selective formation of the endo or exo cycloaddition adducts, see: