Anästhesiol Intensivmed Notfallmed Schmerzther 2022; 57(04): 246-262
DOI: 10.1055/a-1472-4285
CME-Fortbildung
Topthema

Zielgerichtetes hämodynamisches Monitoring im OP: Wozu und womit?

Targeted hemodynamic monitoring in the operating theatre: what for and by what means?
Ulf Lorenzen
1   Klinik für Anästhesiologie und Operative Intensivmedizin, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel
,
Matthias Grünewald
› Author Affiliations

Das zielgerichtete hämodynamische Monitoring und die Balance zwischen adäquater Flüssigkeits- und Volumentherapie und der Applikation vasoaktiver bzw. inotroper Medikamente sind die Grundelemente der modernen perioperativen Therapie [1] [2] [3]. Der Artikel soll einen Überblick zum derzeitigen Vorgehen und einen Ausblick auf die Zukunft des hämodynamischen Monitorings geben. Die aktuellen Möglichkeiten werden an einem Fallbeispiel diskutiert.

Abstract

Goal directed hemodynamic monitoring and the balance in goal directed therapy between adequate fluid/volume therapy and the application of vasoactive or inotropic drugs are the basic elements of modern perioperative therapy.

Surgical procedures should be accompanied by as few side effects and complications as possible. Nevertheless, the number of postoperative complications remains surprisingly high, despite of the modern surgical procedures. Anticipation of potential complications in the perioperative period and their rapid treatment build a core competence of anesthesiological action. Thus, it is clear that anesthesia plays a central role in this balancing act.

This article aims to provide an overview of the application of the currently available perioperative goal directed hemodynamic monitoring. The current possibilities are discussed by using a case example and an outlook on the future of hemodynamic monitoring is given.

Kernaussagen
  • Basismonitoring ist obligat.

  • Ein erweitertes Monitoring ist bei patienten- und eingriffsbezogenen Risiken sinnvoll.

  • Eine hämodynamische Instabilität sollte man vermeiden.

  • Der Zeitpunkt des Therapiebeginns ist entscheidend.

  • Komplikationen durch Gewebehypoxie sind zu vermeiden.

  • DO2 = HZV × Hb × SaO2 × 1,34 + paO2 × 0,0031

  • Das Herzzeitvolumen ist die Hauptstellgröße des Sauerstoffangebots.

  • Monitoring und Therapie gehören zusammen; Monitoring ist nur mit therapeutischem Konzept sinnvoll.

  • Nutzen Sie klare protokollbasierte Algorithmen.

  • Ein „ideales“ hämodynamisches Monitoring gibt es nicht.



Publication History

Article published online:
21 April 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 AWMF. S3-Leitlinie „Intravasale Volumentherapie bei Erwachsenen“. Accessed February 18, 2022 at: http://www.awmf.org/leitlinien/detail/ll/001–020.html
  • 2 Cecconi M, De Backer D, Antonelli M. et al. Consensus on circulatory shock and hemodynamic monitoring. Task force of the European Society of Intensive Care Medicine. Intensive Care Med 2014; 40: 1795-1815
  • 3 Habicher M, Zajonz T, Heringlake M. et al. S3-Leitlinie zur intensivmedizinischen Versorgung herzchirurgischer Patienten: Hämodynamisches Monitoring und Herz-Kreislauf – ein Update. Anaesthesist 2018; 67: 375-379
  • 4 Jarisch A. Kreislauffragen. Dtsch Med Wochenschr 1928; 54: 1211-1213
  • 5 Ellger B, Bösel J, Schürholz T. SOP Hämodynamisches Monitoring. Intensivmedizin up2date 2015; 11: 187-191
  • 6 Pang Q, Hendrickx J, Liu HL. et al. Contemporary perioperative haemodynamic monitoring. Anaesthesiol Intensive Ther 2019; 51: 147-158
  • 7 Watson X, Cecconi M. Haemodynamic monitoring in the peri-operative period: the past, the present and the future. Anaesthesia 2017; 72 (Suppl. 01) 7-15
  • 8 Gruenewald M, Broch O, Bein B. Perioperatives Flüssigkeitsmanagement – Zielgerichtete Therapie. Anästhesiol Intensivmed Notfallmed Schmerzther 2012; 47: 490-498
  • 9 Janssens U. Hämodynamisches Monitoring. Aktuel Kardiol 2017; 6: 59-65
  • 10 Takala J, Ruokonen E, Tenhunen JJ. et al. Early non-invasive cardiac output monitoring in hemodynamically unstable intensive care patients: a multi-center randomized controlled trial. Crit Care 2011; 15: R148
  • 11 Kristensen SD, Knuuti J, Saraste A. et al. 2014 ESC/ESA Guidelines on non-cardiac surgery: cardiovascular assessment and management: The Joint Task Force on non-cardiac surgery: cardiovascular assessment and management of the European Society of Cardiology (ESC) and the European Society of Anaesthesiology (ESA). Eur J Anaesthesiol 2014; 31: 517-573
  • 12 Simon H-B. Ausstattung des Anästhesiearbeitsplatzes. In: Rossaint R, Werner C, Zwißler B. Die Anästhesiologie: Allgemeine und spezielle Anästhesiologie, Schmerztherapie und Intensivmedizin. Berlin, Heidelberg: Springer; 2017: 1-8
  • 13 Hernandez G, Cavalcanti AB, Ospina-Tascon G. et al. Early goal-directed therapy using a physiological holistic view: the ANDROMEDA-SHOCK – A randomized controlled trial. Ann Intensive Care 2018; 8: 52
  • 14 Gregory A, Stapelfeldt WH, Khanna AK. et al. Intraoperative Hypotension Is Associated With Adverse Clinical Outcomes After Noncardiac Surgery. Anesth Analg 2021; 132: 1654-1665
  • 15 Futier E, Lefrant JY, Guinot PG. et al. Effect of individualized vs standard blood pressure management strategies on postoperative organ dysfunction among high-risk patients undergoing major surgery: a randomized clinical trial. JAMA 2017; 318: 1346-1357
  • 16 Saugel B, Vincent JL. Cardiac output monitoring: how to choose the optimal method for the individual patient. Curr Opin Crit Care 2018; 24: 165-172
  • 17 Edmonds jr. HL, Ganzel BL, Austin 3rd EH. Cerebral oximetry for cardiac and vascular surgery. Semin Cardiothorac Vasc Anesth 2004; 8: 147-166
  • 18 Casati A, Fanelli G, Pietropaoli P. et al. Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth Analg 2005; 101: 740-747
  • 19 Casati A, Fanelli G, Pietropaoli P. et al. Monitoring cerebral oxygen saturation in elderly patients undergoing general abdominal surgery: a prospective cohort study. Eur J Anaesthesiol 2007; 24: 59-65
  • 20 Pant S, Bokor DJ, Low AK. Cerebral oxygenation using near-infrared spectroscopy in the beach-chair position during shoulder arthroscopy under general anesthesia. Arthroscopy 2014; 30: 1520-1527
  • 21 Rigamonti A, Scandroglio M, Minicucci F. et al. A clinical evaluation of near-infrared cerebral oximetry in the awake patient to monitor cerebral perfusion during carotid endarterectomy. J Clin Anesth 2005; 17: 426-430
  • 22 Keikha M, Salehi-Marzijarani M, Soldoozi Nejat R. et al. Diagnostic Accuracy of Rapid Ultrasound in Shock (RUSH) Exam; A Systematic Review and Meta-analysis. Bull Emerg Trauma 2018; 6: 271-278
  • 23 Sefidbakht S, Assadsangabi R, Abbasi HR. et al. Sonographic measurement of the inferior vena cava as a predictor of shock in trauma patients. Emerg Radiol 2007; 14: 181-185
  • 24 Beaubien-Souligny W, Rola P, Haycock K. et al. Quantifying systemic congestion with Point-Of-Care ultrasound: development of the venous excess ultrasound grading system. Ultrasound J 2020; 12: 16
  • 25 Gudmundsson P, Rydberg E, Winter R. et al. Visually estimated left ventricular ejection fraction by echocardiography is closely correlated with formal quantitative methods. Int J Cardiol 2005; 101: 209-212
  • 26 Saran S, Gurjar M, Azim A. et al. Trans-Esophageal Doppler Assessment of Acute Hemodynamic Changes Due to Prone Positioning in Acute Respiratory Distress Syndrome Patients. Shock 2019; 52: e39-e44
  • 27 Reeves ST, Finley AC, Skubas NJ. et al. Basic Perioperative Transesophageal Echocardiography Examination: A Consensus Statement of the American Society of Echocardiography and the Society of Cardiovascular Anesthesiologists. J Am Soc Echocardiogr 2013; 26: 443-456
  • 28 Hainer C, Bernhard M, Scheuren K. et al. Echokardiographie bei akuter hämodynamischer Instabilität. Anaesthesist 2006; 55: 1117-1132
  • 29 Penaz J. Current photoelectric recording of blood flow through the finger. Cesk Fysiol 1975; 24: 349-352
  • 30 Bein B, Scholz J, Tonner PH. Hämodynamisches Monitoring: Standards und Fehlerquellen. Anästh Intensivmed 2005; 46: 179-186
  • 31 Ishihara H, Okawa H, Tanabe K. et al. A new non-invasive continuous cardiac output trend solely utilizing routine cardiovascular monitors. J Clin Monit Comput 2004; 18: 313-320
  • 32 Frank O. Die Grundlage des arteriellen Pulses. Z Biol 1899; 32: 483-526
  • 33 Scheeren TWL, Ramsay MAE. New Developments in Hemodynamic Monitoring. J Cardiothorac Vasc Anesth 2019; 33 (Suppl. 01) S67-S72
  • 34 Joosten A, Desebbe O, Suehiro K. et al. Accuracy and precision of non-invasive cardiac output monitoring devices in perioperative medicine: a systematic review and meta-analysis†. Br J Anaesth 2017; 118: 298-310
  • 35 Saugel B, Cecconi M, Hajjar LA. Noninvasive cardiac output monitoring in cardiothoracic surgery patients: available methods and future directions. J Cardiothorac Vasc Anesth 2019; 33: 1742-1752
  • 36 Saugel B, Kouz K, Scheeren TWL. The ‘5 Ts’ of perioperative goal-directed haemodynamic therapy. Br J Anaesth 2019; 123: 103-107
  • 37 Cecconi M, Fasano N, Langiano N. et al. Goal-directed haemodynamic therapy during elective total hip arthroplasty under regional anaesthesia. Crit Care 2011; 15: R132
  • 38 Marik PE, Cavallazzi R, Vasu T. et al. Dynamic changes in arterial waveform derived variables and fluid responsiveness in mechanically ventilated patients: a systematic review of the literature. Crit Care Med 2009; 37: 2642-2647
  • 39 Charron C, Fessenmeyer C, Cosson C. et al. The influence of tidal volume on the dynamic variables of fluid responsiveness in critically ill patients. Anesth Analg 2006; 102: 1511-1517
  • 40 de Waal EE, Rex S, Kruitwagen CL. et al. Dynamic preload indicators fail to predict fluid responsiveness in open-chest conditions. Crit Care Med 2009; 37: 510-515
  • 41 Renner J, Gruenewald M, Meybohm P. et al. Effect of elevated PEEP on dynamic variables of fluid responsiveness in a pediatric animal model. Paediatr Anaesth 2008; 18: 1170-1177
  • 42 Renner J, Gruenewald M, Quaden R. et al. Influence of increased intra-abdominal pressure on fluid responsiveness predicted by pulse pressure variation and stroke volume variation in a porcine model. Crit Care Med 2009; 37: 650-658
  • 43 Masyuk M, Wernly B, Jung C. Prognostic relevance of serum lactate kinetics: a powerful predictor but not Chuck Norris in Intensive Care Medicine. Intensive Care Med 2019; 45: 1174-1175
  • 44 Vallee F, Vallet B, Mathe O. et al. Central venous-to-arterial carbon dioxide difference: an additional target for goal-directed therapy in septic shock?. Intensive Care Med 2008; 34: 2218-2225
  • 45 Bloos F, Reinhart K. Zentralvenöse Sauerstoffsättigung zur Abschätzung der Gewebeoxygenierung. Dtsch Med Wochenschr 2004; 129: 2601-2604
  • 46 Marik PE, Baram M, Vahid B. Does central venous pressure predict fluid responsiveness? A systematic review of the literature and the tale of seven mares. Chest 2008; 134: 172-178
  • 47 Behem CR, Gräßler MF, Trepte CJC. Der zentrale Venendruck in der Leberchirurgie: ein primäres Therapieziel oder ein hämodynamischer Mosaikstein?. Anaesthesist 2018; 67: 780-789
  • 48 Reuter DA, Huang C, Edrich T. et al. Cardiac output monitoring using indicator-dilution techniques: basics, limits, and perspectives. Anesth Analg 2010; 110: 799-811
  • 49 Schiewe R, Bein B. Monitoring und Steuerung der Flüssigkeitstherapie – wozu und womit?. Anästhesiol Intensivmed Notfallmed Schmerzther 2021; 56: 246-260
  • 50 Sakka SG, Ruhl CC, Pfeiffer UJ. et al. Assessment of cardiac preload and extravascular lung water by single transpulmonary thermodilution. Intensive Care Med 2000; 26: 180-187
  • 51 Beurton A, Teboul JL, Monnet X. Transpulmonary thermodilution techniques in the haemodynamically unstable patient. Curr Opin Crit Care 2019; 25: 273-279
  • 52 Boisson M, Poignard ME, Pontier B. et al. Cardiac output monitoring with thermodilution pulse-contour analysis vs. non-invasive pulse-contour analysis. Anaesthesia 2019; 74: 735-740
  • 53 Dehne S, Lund F, Larmann J. et al. Anästhesiologische Aspekte bei der Lebertransplantation. Anaesthesist 2019; 68: 403-418
  • 54 Rudnick MR, Marchi LD, Plotkin JS. Hemodynamic monitoring during liver transplantation: A state of the art review. World J Hepatol 2015; 7: 1302-1311
  • 55 Connors jr. AF, Speroff T, Dawson NV. et al. The effectiveness of right heart catheterization in the initial care of critically ill patients. SUPPORT Investigators. JAMA 1996; 276: 889-897
  • 56 Rivers E, Nguyen B, Havstad S. et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med 2001; 345: 1368-1377
  • 57 Kern JW, Shoemaker WC. Meta-analysis of hemodynamic optimization in high-risk patients. Crit Care Med 2002; 30: 1686-1692
  • 58 Wakeling HG, McFall MR, Jenkins CS. et al. Intraoperative oesophageal Doppler guided fluid management shortens postoperative hospital stay after major bowel surgery. Br J Anaesth 2005; 95: 634-642
  • 59 Berlauk JF, Abrams JH, Gilmour IJ. et al. Preoperative optimization of cardiovascular hemodynamics improves outcome in peripheral vascular surgery. A prospective, randomized clinical trial. Ann Surg 1991; 214: 289-297
  • 60 Zakhaleva J, Tam J, Denoya PI. et al. The impact of intravenous fluid administration on complication rates in bowel surgery within an enhanced recovery protocol: a randomized controlled trial. Colorectal Dis 2013; 15: 892-899
  • 61 Sessler DI, Meyhoff CS, Zimmerman NM. et al. Period-dependent associations between hypotension during and for four days after noncardiac surgery and a composite of myocardial infarction and death: a substudy of the POISE-2 Trial. Anesthesiology 2018; 128: 317-327
  • 62 Shoemaker WC, Appel PL, Kram HB. et al. Prospective trial of supranormal values of survivors as therapeutic goals in high-risk surgical patients. Chest 1988; 94: 1176-1186
  • 63 Heringlake M. Perioperatives hämodynamisches Monitoring im Rahmen zielgerichteter hämodynamischer Therapie. Anaesthesist 2009; 58: 761-763
  • 64 Joosten A, Rinehart J, Van der Linden P. et al. Computer-assisted individualized hemodynamic management reduces intraoperative hypotension in intermediate- and high-risk surgery: a randomized controlled trial. Anesthesiology 2021; 135: 258-272
  • 65 Ruskin KJ, Corvin C, Rice SC. et al. Autopilots in the operating room: safe use of automated medical technology. Anesthesiology 2020; 133: 653-665
  • 66 Davies SJ, Vistisen ST, Jian Z. et al. Ability of an arterial waveform analysis–derived hypotension prediction index to predict future hypotensive events in surgical patients. Anesth Analg 2020; 130: 352-359
  • 67 de Keijzer IN, Vos JJ, Scheeren T. Hypotension prediction index: from proof-of-concept to proof-of-feasibility. J Clin Monitoring Comput 2020; 34: 1135-1138
  • 68 Grundmann CD, Wischermann JM, Fassbender P. et al. Hemodynamic monitoring with Hypotension Prediction Index versus arterial waveform analysis alone and incidence of perioperative hypotension. Acta Anaesthesiol Scand 2021; 65: 1404-1412
  • 69 Schneck E, Schulte D, Habig L. et al. Hypotension Prediction Index based protocolized haemodynamic management reduces the incidence and duration of intraoperative hypotension in primary total hip arthroplasty: a single centre feasibility randomised blinded prospective interventional trial. J Clin Monit Comput 2020; 34: 1149-1158
  • 70 Meyer G, Ebelt H. Hämodynamisches Monitoring in der Intensivmedizin. Intensivmedizin up2date 2020; 16: 63-75
  • 71 White PF, Song D. New criteria for fast-tracking after outpatient anesthesia: a comparison with the modified Aldrete’s scoring system. Anesth Analg 1999; 88: 1069-1072
  • 72 Pearse RM, Moreno RP, Bauer P. et al. Mortality after surgery in Europe: a 7 day cohort study. Lancet 2012; 380: 1059-1065
  • 73 Shoemaker WC, Belzberg H. Pulmonary Artery Catheter Consensus Conference. Crit Care Med 1998; 26: 1760-1761