Subscribe to RSS
DOI: 10.1055/a-1482-9236
Non-alcoholic fatty liver disease (NAFLD) is associated with an increased incidence of osteoporosis and bone fractures
Die nichtalkoholische Fettlebererkrankung (NAFLD) ist mit einer erhöhten Inzidenz von Osteoporose und Knochenfrakturen verbundenAbstract
Background Non-alcoholic fatty liver disease (NAFLD) and osteoporosis are common diseases with a rising incidence worldwide. Both diseases occur in similar patient populations, however, data on their mutual influence are conflicting. Here, we aimed to evaluate the impact of NAFLD on the incidence of osteoporosis and fractures by using the Disease Analyzer database featuring data on diagnoses, prescriptions, and demographic aspects of 7.49 million cases followed in general practices in Germany.
Methods A total of 50,689 patients with NAFLD diagnosed between 2000 and 2015 were matched by age, sex, index year, and 3 comorbidities (obesity, diabetes mellitus, and vitamin D/calcium deficiency) to a cohort of equal size without NAFLD. Incidence of osteoporosis and bone fractures were compared between both groups within 10 years from the index date.
Results Within the observation period, the incidence of osteoporosis was significantly higher in the NAFLD group (6.4%) compared to patients without NAFLD (5.1%; log-rank, p < 0.001). Similar results were observed for bone fractures (12.6 vs. 10.3 %; log-rank p < 0.001). The difference was more pronounced in women compared to men and observed in all age groups >50 years of age.
Conclusion Our data show that NAFLD is significantly associated with osteoporosis as well as bone fractures in a large cohort of patients followed in German general practices. This finding suggests that NAFLD patients might benefit from improved monitoring for the occurrence of bone demineralization and osteoporosis, which in turn could trigger preventive therapeutic measures.
Zusammenfassung
Hintergrund Die nichtalkoholische Fettlebererkrankung (NAFLD) und Osteoporose sind häufige Erkrankungen mit weltweit steigender Inzidenz. Beide Erkrankungen treten in ähnlichen Patientenpopulationen auf, jedoch sind die Daten über ihren gegenseitigen Einfluss widersprüchlich. In dieser Studie verwendeten wir die Datenbank „Disease Analyzer“, die Daten zu Diagnosen, Verordnungen und demografischen Aspekten von 7,49 Millionen Patientenfällen in deutschen Hausarztpraxen enthält, um den Einfluss der NAFLD auf die Inzidenz von Osteoporose und Knochenfrakturen zu evaluieren.
Methoden Insgesamt 50.689 Patienten mit NAFLD, die zwischen 2000 und 2015 diagnostiziert wurden, wurden nach Alter, Geschlecht, Indexjahr und 3 Komorbiditäten (Adipositas, Diabetes mellitus und Vitamin-D-/Kalziummangel) mit einer gleich großen Kohorte von Patienten ohne NAFLD gepaart. Die Inzidenz von Osteoporose und Knochenbrüchen wurde zwischen beiden Gruppen über einen Zeitraum von 10 Jahren ab dem Indexdatum verglichen.
Ergebnisse Innerhalb des Beobachtungszeitraums war die Inzidenz von Osteoporose in der NAFLD-Gruppe signifikant höher (6,4 %) verglichen mit Patienten ohne NAFLD (5,1%; log-rank p<0,001). Ähnliche Ergebnisse wurden für Knochenfrakturen beobachtet (12,6 vs. 10,3%; log-rank p<0,001). Der Unterschied war bei Frauen im Vergleich zu Männern ausgeprägter und wurde in allen Altersgruppen >50 Jahre beobachtet.
Schlussfolgerung Unsere Daten zeigen, dass die NAFLD signifikant mit Osteoporose sowie Knochenbrüchen in einer großen Kohorte von Patienten, die in deutschen Allgemeinarztpraxen behandelt wurden, assoziiert ist. Dieser Befund sollte zu einer verbesserten Überwachung von NAFLD-Patienten hinsichtlich des Auftretens von Osteoporose führen, um entsprechende präventive und therapeutische Maßnahmen einleiten zu können.
Publication History
Received: 29 January 2021
Accepted after revision: 11 April 2021
Article published online:
28 October 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Younossi Z, Tacke F, Arrese M. et al. Global perspectives on nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Hepatology 2019; 69: 2672-2682 DOI: 10.1002/hep.30251. (PMID: 30179269)
- 2 Schattenberg JM, Schuppan D. Nonalcoholic steatohepatitis: the therapeutic challenge of a global epidemic. Curr Opin Lipidol 2011; 22: 479-488 DOI: 10.1097/MOL.0b013e32834c7cfc. (PMID: 22002020)
- 3 Vos T, Allen C, Arora M. et al. Global, regional, and national incidence, prevalence, and years lived with disability for 310 diseases and injuries, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016; 388: 1545-1602 DOI: 10.1016/S0140-6736(16)31678-6. (PMID: 27733282)
- 4 Wong RJ, Aguilar M, Cheung R. et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015; 148: 547-555 DOI: 10.1053/j.gastro.2014.11.039. (PMID: 25461851)
- 5 Schuppan D, Schattenberg JM. Non-alcoholic steatohepatitis: Pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol 2013; 28: 68-76 DOI: 10.1111/jgh.12212. (PMID: 23855299)
- 6 Sànchez-Riera L, Carnahan E, Vos T. et al. The global burden attributable to low bone mineral density. Ann Rheum Dis 2014; 73: 1635-1645 DOI: 10.1136/annrheumdis-2013-204320. (PMID: 24692584)
- 7 Mai HT, Tran TS, Ho-Le TP. et al. Two-Thirds of all fractures are not attributable to osteoporosis and advancing age: implications for fracture prevention. J Clin Endocrinol Metab 2019; 104: 3514-3520 DOI: 10.1210/jc.2018-02614. (PMID: 30951170)
- 8 Cummings SR, Melton LJ. Osteoporosis I: epidemiology and outcomes of osteoporotic fractures. Lancet 2002; 359: 1761-1767 DOI: 10.1016/S0140-6736(02)08657-9. (PMID: 12049882)
- 9 Upala S, Jaruvongvanich V, Wijarnpreecha K, Sanguankeo A. Nonalcoholic fatty liver disease and osteoporosis: a systematic review and meta-analysis. J Bone Miner Metab 2017; 35: 685-693 DOI: 10.1007/s00774-016-0807-2. (PMID: 27928661)
- 10 Moon SS, Lee YS, Kim SW. Association of nonalcoholic fatty liver disease with low bone mass in postmenopausal women. Endocrine 2012; 42: 423-429 DOI: 10.1007/s12020-012-9639-6. (PMID: 22407492)
- 11 Li M, Xu Y, Xu M. et al. Association between nonalcoholic fatty liver disease (NAFLD) and osteoporotic fracture in middle-aged and elderly Chinese. J Clin Endocrinol Metab 2012; 97: 2033-2038 DOI: 10.1210/jc.2011-3010. (PMID: 22466338)
- 12 Pirgon O, Bilgin H, Tolu I, Odabas D. Correlation of insulin sensitivity with bone mineral status in obese adolescents with nonalcoholic fatty liver disease. Clin Endocrinol 2011; 75: 189-195 DOI: 10.1111/j.1365-2265.2011.04038.x. (PMID: 21521307)
- 13 Lee SH, Yun JM, Kim SH. et al. Association between bone mineral density and nonalcoholic fatty liver disease in Korean adults. J Endocrinol Invest 2016; 39: 1329-1336 DOI: 10.1007/s40618-016-0528-3. (PMID: 27561910)
- 14 Targher G, Lonardo A, Rossini M. Nonalcoholic fatty liver disease and decreased bone mineral density: Is there a link?. J Endocrinol Invest 2015; 38: 817-825
- 15 Rathmann W, Bongaerts B, Carius HJ. et al. Basic characteristics and representativeness of the German Disease Analyzer database. Int J Clin Pharmacol Ther 2018; 56: 459-466 DOI: 10.5414/CP203320. (PMID: 30168417)
- 16 Becher H, Kostev K, Schröder-Bernhardi D. Validity and representativeness of the “Disease Analyzer” patient database for use in pharmaco-epidemiological and pharmacoeconomic studies. Int J Clin Pharmacol Ther 2009; 47: 617-626
- 17 Labenz C, Huber Y, Michel M. et al. Nonalcoholic fatty liver disease increases the risk of anxiety and depression. Hepatol Commun 2020; 4: 1293-1301 DOI: 10.1002/hep4.1541. (PMID: 32923833)
- 18 Compston J, Cooper A, Cooper C. et al. UK clinical guideline for the prevention and treatment of osteoporosis. Arch Osteoporos 2017; 12: 43 DOI: 10.1007/s11657-017-0324-5. (PMID: 28425085)
- 19 Wongdee K. Osteoporosis in diabetes mellitus: Possible cellular and molecular mechanisms. World J Diabetes 2011; 2: 41 DOI: 10.4239/wjd.v2.i3.41. (PMID: 21537459)
- 20 Mohsin S, Kaimala S, Sunny JJ. et al. Type 2 diabetes mellitus increases the risk to hip fracture in postmenopausal osteoporosis by deteriorating the trabecular bone microarchitecture and bone mass. J Diabetes Res 2019; 2019 DOI: 10.1155/2019/3876957. (PMID: 31815147)
- 21 Bano R, Mahmood TA, Mahmood TA, Arulkumaran S, Chervenak FA. Female obesity and osteoporosis. Obesity and Gynecology. In: . London: Elsevier; 2020: 265-272
- 22 Zhao LJ, Jiang H, Papasian CJ. et al. Correlation of obesity and osteoporosis: effect of fat mass on the determination of osteoporosis. J Bone Miner Research 2008; 23: 17-29 DOI: 10.1359/jbmr.070813. (PMID: 17784844)
- 23 Sharma S, Tandon V, Mahajan S. et al. Obesity: friend or foe for osteoporosis. J Mid-life Health 2014; 5: 6 DOI: 10.4103/0976-7800.127782. (PMID: 24672199)
- 24 Widjaja AA, Chothani SP, Cook SA. Different roles of interleukin 6 and interleukin 11 in the liver: implications for therapy. Hum Vaccin Immunother 2020; 16: 2357-2362 DOI: 10.1080/21645515.2020.1761203. (PMID: 32530750)
- 25 Liang B, Feng Y. The association of low bone mineral density with systemic inflammation in clinically stable COPD. Endocrine 2012; 42: 190-195 DOI: 10.1007/s12020-011-9583-x. (PMID: 22198912)