Synthesis 2021; 53(17): 3110-3120
DOI: 10.1055/a-1485-5781
special topic
Bond Activation – in Honor of Prof. Shinji Murai

Reconstruction of Carbon Bond Frameworks via Oxapalladacycles Promoted by the Synergistic Effect of Palladium Catalyst and Triethylborane

Ryo Ninokata
,
Riho Korogi
,
Junya Nakao
,
Tsutomu Fukuda
,
Gen Onodera
,
This work was supported by a Grant-in-Aid for Scientific Research (B) (JP18H01981) from the Japan Society for the Promotion of Science (JSPS) and partly by a Grant-in-Aid for Scientific Research on Innovative Areas, ‘Precise Formation of a Catalyst Having a Specified Field for Use in Extremely Difficult Substrate Conversion Reactions’ (No. JP18H04266) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT).


Abstract

Pd-catalyzed β-carbon elimination of 3-hydroxy-4-pent­enoic acid derivatives promoted by triethylborane proceeds to form conjugated dienes via a decarboxylation process. The formed conjugated dienes undergo the Prins reaction with aldehydes in situ to afford conjugated homoallylic alcohols. These sequential transformations enable the conversion of diastereomeric mixtures of 3-hydroxy-4-pentenoic acids, which are readily prepared from the simple crossed aldol reaction of esters and α,β-unsaturated aldehydes, into 3,5-hexadienyl alcohols with high regio- and stereoselectivities in a single manipulation.

Supporting Information



Publication History

Received: 13 March 2021

Accepted after revision: 19 April 2021

Accepted Manuscript online:
19 April 2021

Article published online:
19 May 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Cleavage of Carbon-Carbon Single Bonds by Transition Metals. Murakami M, Chatani N. Wiley-VCH; Weinheim: 2016
    • 2a Terao Y, Wakui H, Satoh T, Miura M, Nomura M. J. Am. Chem. Soc. 2001; 123: 1040
    • 2b Constantieux T, Rodriguez J. Sci. Synth. 2004; 26: 413
    • 2c Nishimura T, Uemura S. Synlett 2004; 201
    • 2d Murakami M, Ashida S, Matsuda T. J. Am. Chem. Soc. 2005; 127: 6932
    • 2e Bressy C, Alberico D, Lautens M. J. Am. Chem. Soc. 2005; 127: 13148
    • 2f Mehta G, Kumaran RS. Tetrahedron Lett. 2005; 46: 8831
    • 2g Murakami M, Ashida S, Matsuda T. J. Am. Chem. Soc. 2006; 128: 2166
    • 2h Ni Y, Montgomery J. J. Am. Chem. Soc. 2006; 128: 2609
    • 2i Ikeda S, Obora H, Tsuchida E, Shirai N, Odashima K. Organometallics 2008; 27: 1645
    • 2j Satoh T, Miura M. Synthesis 2010; 3395
    • 2k Kumar P, Louie J. Org. Lett. 2012; 14: 2026
    • 2l Li Y, Lin Z. Organometallics 2013; 32: 3003
    • 2m Mori T, Akioka Y, Kawahara H, Ninokata R, Onodera G, Kimura M. Angew. Chem. Int. Ed. 2014; 53: 10434 ; Angew. Chem. 2014, 126, 10602
    • 3a Harayama H, Kuroki T, Kimura M, Tanaka S, Tamaru Y. Angew. Chem. Int. Ed. Engl. 1997; 36: 2352 ; Angew. Chem. 1997, 109, 2449
    • 3b Harayama H, Kimura M, Tanaka S, Tamaru Y. Tetrahedron Lett. 1998; 39: 8475
    • 3c Mori M, Kimura M, Takahashi Y, Tamaru Y. Chem. Commun. 2006; 4303
  • 4 Kimura M, Mori M, Tamaru Y. Chem. Commun. 2007; 4504

    • Et3B promotes allyl alcohols to undergo oxidative addition to Pd(0) to form π-allylpalladium species; see:
    • 5a Tamaru Y, Horino Y, Araki M, Tanaka S, Kimura M. Tetrahedron Lett. 2000; 41: 5705
    • 5b Horino Y, Naito M, Kimura M, Tanaka S, Tamaru Y. Tetrahedron Lett. 2001; 42: 3113
    • 5c Kimura M, Horino Y, Mukai R, Tanaka S, Tamaru Y. J. Am. Chem. Soc. 2001; 123: 10401
    • 5d Kimura M, Futamata M, Shibata K, Tamaru Y. Chem. Commun. 2003; 234
    • 5e Kimura M, Mukai R, Tanigawa N, Tanaka S, Tamaru Y. Tetrahedron 2003; 59: 7767
    • 5f Kimura M, Futamata M, Mukai R, Tamaru Y. J. Am. Chem. Soc. 2005; 127: 4592
    • 5g Kimura M, Fukasaka M, Tamaru Y. Heterocycles 2006; 67: 535
    • 5h Kimura M, Fukasaka M, Tamaru Y. Synthesis 2006; 3611
    • 5i Fukushima M, Takushima D, Satomura H, Onodera G, Kimura M. Chem. Eur. J. 2012; 18: 8019
    • 5j Takushima D, Fukushima M, Satomura H, Onodera G, Kimura M. Heterocycles 2012; 86: 171
  • 6 Kimura M, Kohno T, Toyoda K, Mori T. Heterocycles 2010; 82: 281
    • 7a Montgomery J. Acc. Chem. Res. 2000; 33: 467
    • 7b Kimura M, Tamaru Y. Top. Curr. Chem. 2007; 279: 173
    • 7c Holmes M, Schwartz LA, Krische MJ. Chem. Rev. 2018; 118: 6026
    • 8a Sato Y, Takimoto M, Hayashi K, Katsuhara T, Takagi K, Mori M. J. Am. Chem. Soc. 1994; 116: 9771
    • 8b Kimura M, Ezoe A, Shibata K, Tamaru Y. J. Am. Chem. Soc. 1998; 120: 4033
    • 8c Takimoto M, Hiraga Y, Sato Y, Mori M. Tetrahedron Lett. 1998; 39: 4543
    • 8d Kimura M, Fujimatsu H, Ezoe A, Shibata K, Shimizu M, Matsumoto S, Tamaru Y. Angew. Chem. Int. Ed. 1999; 38: 397 ; Angew. Chem. 1999, 111, 410
    • 8e Kimura M, Ezoe A, Tanaka S, Tamaru Y. Angew. Chem. Int. Ed. 2001; 40: 3600 ; Angew. Chem. 2001, 113, 3712
    • 8f Loh T.-P, Song HY, Zhou Y. Org. Lett. 2002; 4: 2715
    • 8g Sato Y, Sawaki R, Saito N, Mori M. J. Org. Chem. 2002; 67: 656
    • 8h Kimura M, Miyachi A, Kojima K, Tanaka S, Tamaru Y. J. Am. Chem. Soc. 2004; 126: 14360
    • 8i Sawaki R, Sato Y, Mori M. Org. Lett. 2004; 6: 1131
    • 8j Ogoshi S, Tonomori K.-I, Oka M, Kurosawa H. J. Am. Chem. Soc. 2006; 128: 7077
    • 8k Kimura M, Ezoe A, Mori M, Iwata K, Tamaru Y. J. Am. Chem. Soc. 2006; 128: 8559
    • 8l Yang Y, Zhu S.-F, Duan H.-F, Zhou C.-Y, Wang L.-X, Zhou Q.-L. J. Am. Chem. Soc. 2007; 129: 2248
    • 8m Sato Y, Hinata Y, Seki R, Oonishi Y, Saito N. Org. Lett. 2007; 9: 5597
    • 8n McCarren PR, Liu P, Cheong PH.-Y, Jamison TF, Houk KN. J. Am. Chem. Soc. 2009; 131: 6654
    • 8o Köpfer A, Sam B, Breit B, Krische MJ. Chem. Sci. 2013; 4: 1876
    • 8p Mori T, Akioka Y, Onodera G, Kimura M. Molecules 2014; 19: 9288
    • 8q Karmakar R, Sunea A, Bisai V, Singh VK. Org. Lett. 2015; 17: 5650
  • 9 Fukushima M, Takushima D, Kimura M. J. Am. Chem. Soc. 2010; 132: 16346
    • 10a Wells PB, Bates AJ. J. Chem. Soc. A 1968; 3064
    • 10b Crociani B, Antonaroli S, Paci M. Organometallics 1997; 16: 384
    • 10c Kus M, Artok L, Aygun M. J. Org. Chem. 2015; 80: 5494
    • 11a van Haaren RJ, Goubitz K, Fraanje J, van Strijdonck GP. F, Oevering H, Coussens B, Reek JN. H, Kamer PC. J, van Leeuwen PW. N. M. Inorg. Chem. 2001; 40: 3363
    • 11b Stockland RA, Levine AM. Jr, Giovine MT, Guzei IA, Cannistra JC. Organometallics 2004; 23: 647
    • 11c Fujita K.-i, Yamashita M, Puschmann F, Alvarez-Falcon MM, Incarvito CD, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 9044
    • 11d Breit B, Seiche W. Pure Appl. Chem. 2006; 78: 249
    • 11e Johns AM, Utsunomiya M, Incarvito CD, Hartwig JF. J. Am. Chem. Soc. 2006; 128: 1828
    • 11f Fujihara T, Katafuchi Y, Iwai T, Terao J, Tsuji Y. J. Am. Chem. Soc. 2010; 132: 2094
    • 11g John A, Dereli B, Ortuño MA, Johnson HE, Hillmyer MA, Cramer CJ, Tolman WB. Organometallics 2017; 36: 2956
    • 11h Wang G.-Z, Shang R, Fu Y. Org. Lett. 2018; 20: 888
    • 11i Mori T, Ishii C, Kimura M. Org. Process Res. Dev. 2019; 23: 1709