Subscribe to RSS
DOI: 10.1055/a-1492-4943
Recent Advances and the Prospect of Hypervalent Iodine Chemistry
This work was financially supported by the National Natural Science Foundation of China (21772096 and 22071116) and the National Key Research and Development Program of China (2017YFD020030202).
Dedicated to the College of Chemistry, Nankai University, on its 100th anniversary
Abstract
Nowadays, hypervalent iodine chemistry has remarkably advanced in parallel with the emergence of novel hypervalent iodine reagents. Hypervalent iodine reagents, due to their outstanding characteristics including rich reactivities, excellent chemoselectivity, stability, and environmental friendliness, are becoming more and more popular in the synthetic organic chemistry. In this Account, a number of recent elegant research works and our perspective on the future of hypervalent iodine chemistry is presented.
1 Introduction
2 Recent Advances and Discussion
2.1 Novel Reactivities of Hypervalent Iodine Reagents
2.2 Atom-Economical Reactions Promoted by Hypervalent Iodine Reagents
2.3 Other Applications of Hypervalent Iodine Reagents
2.4 The Applications of DFT Calculations in Elucidating Reaction Mechanism Involving Hypervalent Iodine Reagents
3 Outlook and Conclusion
Key words
hypervalent iodine - oxidation - functional group transfer - atom economy - DFT calculationPublication History
Received: 31 March 2021
Accepted after revision: 27 April 2021
Accepted Manuscript online:
27 April 2021
Article published online:
25 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1 Zhdankin VV. Hypervalent Iodine Chemistry: Preparation, Structure and Synthetic Application of Polyvalent Iodine Compounds. John Wiley & Sons; New York: 2014
- 2a Yoshimura A, Zhdankin VV. Chem. Rev. 2016; 116: 3328
- 2b Li Y, Hari DP, Vita MV, Waser J. Angew. Chem. Int. Ed. 2016; 55: 4436
- 2c Wang X, Studer A. Acc. Chem. Res. 2017; 50: 1712
- 3 Willgerodt C. J. Prakt. Chem. 1886; 33: 154
- 4a Varvoglis A. The Organic Chemistry of Polycoordinated Iodine. VCH Publishers; Weinheim: 1992
- 4b Varvoglis A. Hypervalent Iodine in Organic Synthesis. Academic Press; London: 1997
- 4c Wirth T. Top. Curr. Chem 2003; 1: 224
- 5a Zhdankin VV, Stang PJ. Chem. Rev. 2008; 108: 5299
- 5b Merritt EA, Olofsson B. Angew. Chem. Int. Ed. 2009; 48: 9052
- 5c Dohi T, Kita Y. Chem. Commun. 2009; 2073
- 5d Singh FV, Wirth T. Chem. Asian J. 2014; 9: 950
- 5e Charpentier J, Früh N, Togni A. Chem. Rev. 2015; 115: 650
- 5f Duan Y.-N, Jiang S, Han Y.-C, Sun B, Zhang C. Chin. J. Org. Chem. 2016; 36: 3052
- 5g Han Y.-C, Zhang C. Tetrahedron Lett. 2018; 59: 3052
- 5h Hari DP, Caramenti P, Waser J. Acc. Chem. Res. 2018; 51: 3212
- 5i Murphy GK, Racicot L, Carle MS. Asian J. Org. Chem. 2018; 7: 837
- 5j Elsherbini M, Wirth T. Chem. Eur. J. 2018; 24: 13399
- 5k Parra A. Chem. Rev. 2019; 119: 12033
- 5l Ghosh MK, Rajkiewicz AA, Kalek M. Synthesis 2019; 51: 359
- 6 The data from https://scifinder.cas.org and ‘hypervalent iodine’ as the key word, January 2021.
- 7 The 7th ICHIC in Moscow will be held in the summer of 2022: https://www.ichic2020.ru/index.php/en/.
- 8a Cui L.-Q, Dong Z.-L, Liu K, Zhang C. Org. Lett. 2011; 13: 6488
- 8b Harschneck T, Hummel S, Kirsch SF, Klahn P. Chem. Eur. J. 2012; 18: 1187
- 8c Souto A, Martínez C, Velilla I, Muñiz K. Angew. Chem. Int. Ed. 2013; 52: 1324
- 8d Yusubov MS, Svitich DY, Yoshimura A, Nemykin VN, Zhdankin VV. Chem. Commun. 2013; 49: 11269
- 8e Yang Y.-D, Azuma A, Tokunaga E, Yamasaki M, Shiro M, Shibata N. J. Am. Chem. Soc. 2013; 135: 8782
- 8f Garamenti P, Nicolai S, Waser J. Chem. Eur. J. 2017; 23: 14702
- 8g Xia H.-D, Zhang Y.-D, Wang Y.-H, Zhang C. Org. Lett. 2018; 20: 4052
- 8h Mészáros Á, Székely A, Stirling A, Novák Z. Angew. Chem. Int. Ed. 2018; 57: 6643
- 8i Kalim J, Duhail T, Le T.-N, Vanthuyne N, Anselmi E, Togni A, Magnier E. Chem. Sci. 2019; 10: 10516
- 8j Hokamp T, Wirth T. J. Org. Chem. 2019; 84: 8674
- 8k Yudasaka M, Shimbo D, Maruyama T, Tada N, Itoh A. Org. Lett. 2019; 21: 1098
- 8l Yusubov MS, Soldatova NS, Postnikov PS, Valiev RR, Yoshimura A, Wirth T, Nemykine VN, Zhdankin VV. Chem. Commun. 2019; 55: 7760
- 8m Ding W, Chai J, Wang C, Wu J, Yoshikai N. J. Am. Chem. Soc. 2020; 142: 8619
- 8n Zhang G.-T, Wang Y.-X, Xu J, Sun J.-Y, Sun F.-X, Zhang Y.-L, Zhang C.-L, Du Y.-F. Chem. Sci. 2020; 11: 947
- 9a Nicolaou KC, Zhong Y.-L, Baran PS. J. Am. Chem. Soc. 2000; 122: 7596
- 9b Nicolaou KC, Baran PS, Zhong Y.-L. J. Am. Chem. Soc. 2001; 123: 3183
- 9c Lee JC, Lee JY, Lee SJ. Tetrahedron Lett. 2004; 45: 4939
- 9d Zhao X.-F, Zhang C. Synthesis 2007; 551
- 9e Liu S.-S, Wang L, Duan Y.-N, Yu A, Zhang C. Sci. China Chem. 2019; 62: 597
- 10 Han D.-D, He Q.-Q, Fan R.-H. Nat. Commun. 2018; 9: 3423
- 11 Yu C, Patureau FW. Angew. Chem. Int. Ed. 2019; 58: 18530
- 12 Han Y.-C, Zhang Y.-D, Jia Q, Cui J, Zhang C. Org. Lett. 2017; 19: 5300
- 13 Xing B, Ni C, Hu J. Angew. Chem. Int. Ed. 2018; 57: 9896
- 14 Kiyokawa K, Okumatsu D, Minakata S. Angew. Chem. Int. Ed. 2019; 58: 8907
- 15 Yang X.-G, Zheng K, Zhang C. Org. Lett. 2020; 22: 2026
- 16 Okuyama T, Takino T, Sueda T, Ochiai M. J. Am. Chem. Soc. 1995; 117: 3360
- 17 Yoshimura A, Fuchs JM, Middleton KR, Maskaev AV, Rohde GT, Saito A, Postnikov PS, Yusubov MS, Nemykin VN, Zhdankin VV. Chem. Eur. J. 2017; 23: 16738
- 18 Silva FC. S, Van N T, Wengryniuk SE. J. Am. Chem. Soc. 2020; 142: 64
- 19 Tian J, Luo F, Zhang Q, Liang Y, Li D, Zhan Y, Kong L, Wang Z, Peng B. J. Am. Chem. Soc. 2020; 142: 6884
- 20 Wang M, Fan Q.-L, Jiang X.-F. Org. Lett. 2016; 18: 5756
- 21 Chen H, Han J, Wang L. Angew. Chem. Int. Ed. 2018; 57: 12313
- 22 Colomer I, Barcelos RC, Donohoe TJ. Angew. Chem. Int. Ed. 2016; 55: 4748
- 23 Juárez-Ornelas KA, Jiménez-Halla JO. C, Kato T, Solorio-Alvarado CR, Maruoka K. Org. Lett. 2019; 21: 1315
- 24 Zhao Z.-Z, Britt LH, Murphy GK. Chem. Eur. J. 2018; 24: 17002
- 25 Hashimoto T, Shimazaki Y, Omatsu Y, Maruoka K. Angew. Chem. Int. Ed. 2018; 57: 7200
- 26 He C, Hu J, Wu Y, Ding H. J. Am. Chem. Soc. 2017; 139: 6098
- 27 Li L, Yuan K, Jia Q.-L, Jia Y.-X. Angew. Chem. Int. Ed. 2019; 58: 6074
- 28 Abrecht S, Adam JM, Bromberger U, Diodone R, Fettes A, Fischer R, Goeckel V, Hildbrand S, Moine G, Weber M. Org. Process Res. Dev. 2011; 15: 503
- 29 Tian J, Gao W.-C, Zhou D.-M, Zhang C. Org. Lett. 2012; 14: 3020
- 30a Zhang C, Liu S.-S, Sun B, Tian J. Org. Lett. 2015; 17: 4106
- 30b Liu D, Guo Y.-L, Qu J, Zhang C. Beilstein J. Org. Chem. 2018; 14: 1112
- 30c Qiu L.-J, Liu D, Zheng K, Zhang M.-T, Zhang C. Front. Chem. 2020; 8: 183
- 31a Fokin AA, Schreiner PR. Adv. Synth. Catal. 2003; 345: 1035
- 31b Wang C, Liu F, Shi Z. Sci. Sin. Chim. 2020; 50: 756
- 31c Gunsalus NJ, Koppaka A, Park SH, Bischof SM, Hashiguchi BG, Periana RA. Chem. Rev. 2017; 117: 8521
- 32 Konnick MM, Hashiguchi BG, Devarajan D, Boaz NC, Gunnoe TB, Groves JT, Gunsalus N, Ess DH, Periana RA. Angew. Chem. Int. Ed. 2014; 53: 10490
- 33a Sajith PK, Suresh CH. Inorg. Chem. 2012; 51: 967
- 33b Zhou B, Yan T, Xue X.-S, Cheng J.-P. Org. Lett. 2016; 18: 6128
- 33c Jiang H, Sun T.-S, Wang X, Xie Y, Zhang X, Wu Y.-D, Schaefer HF. III. Org. Lett. 2017; 19: 6502
- 33d Zhou B, Haj MK, Jacobsen EN, Houk KN, Xue X.-S. J. Am. Chem. Soc. 2018; 140: 15206
- 33e Jiang H, Sun T.-Y, Chen Y, Zhang X, Wu Y.-D, Xie Y, Schaefer HF. III. Chem. Commun. 2019; 55: 5667
- 33f Farshadfar K, Chipman A, Yates BF, Ariafard A. ACS Catal. 2019; 9: 6510
- 33g Matsumoto K, Nakajima M, Nemoto T. J. Phys. Org. Chem. 2019; 32: 3961
- 33h Brea O, Szabó KJ, Himo F. J. Org. Chem. 2020; 85: 15577
- 33i Wang Q, Lübcke M, Biosca M, Hedberg M, Eriksson L, Himo F, Szabó KJ. J. Am. Chem. Soc. 2020; 142: 20048
- 33j Soldatova NS, Postnikov PS, Suslonov VV, Kissler TY, Ivanov DM, Yusubov MS, Galmés B, Frontera A, Kukushkin VY. Org. Chem. Front. 2020; 7: 2230
- 33k Farshadfar K, Bird MJ, Olivier WJ, Hyland CJ. T, Smith JA, Ariafard A. J. Org. Chem. 2021; 86: 2998
For selected examples of the books, please see:
For selected examples of the reviews, please see:
For selected examples of the new hypervalent iodine reagents, please see:
For selected examples, please see:
For recent examples of DFT calculations in hypervalent iodine chemistry, please see: