Subscribe to RSS
DOI: 10.1055/a-1499-8865
Facile, Mild-Temperature Synthesis of Metal-Free Phthalocyanines
We gratefully thank the National Natural Science Foundation of China (20472014), the Jilin Provincial Development and Re-form Commission Project (2019C040), the National Key Research and Development Program of China (2019YFC1605305-03), the Key Project of Tianjin Natural Science Foundation (18JCZDJC97800) and the Open Fund of Tianjin Key Lab of Aquatic Ecology and Aquaculture (TJAE201802), for their support.
![](https://www.thieme-connect.de/media/synthesis/202115/lookinside/thumbnails/ss-2021-g0174-op_10-1055_a-1499-8865-1.jpg)
Abstract
It is important for the synthesis and research of phthalocyanine compounds for these compounds to be easily obtained at low temperature. We observed that metal-free phthalocyanine was sometimes found in a simple system used to synthesize phthalocyanine precursors at room temperature, and further studies showed that the key to the effective formation of phthalocyanines at low temperature lay in the presence of equal volumes of alcohol and amine, in addition to substrate phthalonitriles and solvents, in the reaction system. A synthetic mechanism was proposed and facile syntheses have been realized, such as the synthesis of tetra-α(β)-nitrophthalocyanines and tetra-α(β)-(4-tert-butylphenoxy)phthalocyanines from the corresponding substituted phthalonitriles at mild temperature (37 °C). The results are significant for the design and synthesis of new phthalocyanine derivatives, and the method is convenient and easy to adopt for general use in standard laboratories.
Key words
metal-free phthalocyanine - facile synthesis - characterization - room temperature - amine - alcohol - phthalonitrileSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1499-8865.
- Supporting Information
Publication History
Received: 25 March 2021
Accepted after revision: 05 May 2021
Accepted Manuscript online:
05 May 2021
Article published online:
25 May 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Garip E. Ö, Özçeşmeci M, Katırcı R, Özçeşmeci İ, Hamuryudan E. J. Porphyrins Phthalocyanines 2019; 23: 1563
- 2 Shiina Y, Kage Y, Furukawa K, Wang H, Yoshikawa H, Furuta H, Kobayashi N, Shimizu S. Angew. Chem. Int. Ed. 2020; 132: 22910
- 3 Winterfeld KA, Lavarda G, Guilleme J, Sekita M, Guldi DM, Torres T, Bottari G. J. Am. Chem. Soc. 2017; 139: 5520
- 4 Huang X, Hu M, Zhao X, Li C, Yuan Z, Liu X, Cai C, Zhang Y, Hu Y, Chen Y. Org. Lett. 2019; 21: 3382
- 5 Braun A, Tcherniac J. Ber. Dtsch. Chem. Ges. 1907; 40: 2709
- 6 Cao L, Fei X, Zhao H, Huang C. Dyes Pigm. 2019; 173: 107879
- 7 Janczak J. Polyhedron 2014; 70: 164
- 8 Gsänger M, Bialas D, Huang L, Stolte M, Würthner F. Adv. Mater. 2016; 28: 3615
- 9 Peng J, Huang Q, Zhuge W, Liu Y, Zhang C, Yang W, Xiang G. Biosens. Bioelectron. 2018; 106: 212
- 10 Winiarski JP, de Barros MR, Wecker GS, Nagurniak GR, Parreira RL. T, Affeldt RF, Peralta RA, Jost CL. J. Mater. Chem. C 2020; 8: 6839
- 11 Castro KA. D. F, Figueira F, Almeida Paz FA, Tome JP. C, da Silva RS, Nakagaki S, Neves MG. P. M. S, Cavaleiro JA. S, Simões MM. Q. Dalton Trans. 2019; 8144
- 12 Bian J, Feng J, Zhang Z, Li Z, Zhang Y, Liu Y, Ali S, Qu Y, Bai L, Xie J, Tang D, Li X, Bai F, Tang J, Jing L. Angew. Chem. Int. Ed. 2019; 58: 10873
- 13 Nezhad ZA. R, Reza MM, Sefidan JM. F, Yousef F, Habib T, Reza R. Laser Med. Sci. 2018; 33: 1969
- 14 Bayat F, Karimi AR. Int. J. Biol. Macromol. 2019; 129: 927
- 15 Wong CT. T, Chu JC. H, Ha SY. Y, Wong RC. H, Dai G, Kwong T, Wong C, Ng DK. P. Org. Lett. 2020; 22: 7098
- 16 Lu X, Zhu W, Chen T, Peng Q, Yu C, Yang M. Chem. Phys. Lett. 2019; 735: 136737
- 17 Cong FD, Ning B, Du XG, Ma CY, Yu HF, Chen B. Dyes Pigm. 2005; 66: 149
- 18 Ma C, Tian D, Hou X, Chang Y, Cong F, Yu H, Du X, Du G. Synthesis 2005; 741
- 19 Leznoff CC, Hu M, Nolan KJ. M. Chem. Commun. 1996; 27: 1245
- 20 Kharisov BI, Cantú Coronado CE, Coronado Cerda KP, Ortiz Méndez U, Jacobo Guzmán JA, Ramírez Patlán LA. Inorg. Chem. Commun. 2004; 7: 1269
- 21 Garnovskii AD, Kharisov BI. Synthetic Coordination and Organometallic Chemistry . Marcel Dekker Inc; New York: 2003: 513
- 22 Nemykin VN, Kobayashi N, Mytsyk VM, Volkov SV. Chem. Lett. 2000; 29: 546
- 23 Kharisov BI, Ortiz Méndez U, Almaraz Garza JL, Almaguer Rodríguez JR. New J. Chem. 2005; 29: 686
- 24 Kharisov BI, Rivera de la Rosa J, Kharissova OV, Almaraz Garza JL, Almaguer Rodríguez JR, Puente LI, Ortiz Méndez U, Ibarra Arvizu AK. J. Coord. Chem. 2007; 60: 355
- 25 Cong F, Wei Z, Huang Z, Yu F, Liu H, Cui J, Yu H, Chu X, Du X, Xing K, Lai J. Dyes Pigm. 2015; 120: 1
- 26 Furuyama T, Maeda K, Maeda H, Segi M. J. Org. Chem. 2019; 84: 14306
- 27 Mohammed I, Oluwole DO, Nemakal M, Sannegowda LK, Nyokong T. Dyes Pigm. 2019; 170: 107592
- 28 Bachovchin WW. Magn. Reson. Chem. 2001; 39: S199
- 29 Dudiak BM, Maksimchuk KR, Bednar MM, Podracky CJ, Burg JM, Nguyen TM, Nwogbo FO, Valdivia RH, Mccafferty DG. Biochemistry 2019; 58: 3527
- 30 Zhang C, Bijl E, Svensson B, Hettinga K. Compr. Rev. Food Sci. F. 2019; 18: 834
- 31 Tomoda H, Saito S, Ogawa S, Shiraishi S. Chem. Lett. 1980; 9: 1277
- 32 Elleuche S, Fodor K, von der Heyde A, Klippel B, Wilmanns M, Antranikian G. Appl. Microbiol. Biotechnol. 2013; 97: 8963
- 33 Schwander T, Mclean R, Zarzycki J, Erb TJ. J. Biol. Chem. 2018; 293: 1702
- 34 Yamada Y, Nawate K, Maeno T, Tanaka K. Chem. Commun. 2018; 54: 8226
- 35 Li P, Cong F, Zhang S, Zhou W, Zhu H, Xu Y, Yu J. Anal. Methods 2019; 11: 5629
- 36 Leznoff CC, Hu M, Mcarthur CR, Qing Y, van Lier JE. Can. J. Chem. 1994; 72: 1990
- 37 Kasuga K, Kawashima M, Asano K, Sugimori T, Abe K, Kikkawa T, Fujiwara T. Chem. Lett. 1996; 25: 867
- 38 Kobayashi N, Narita F, Ishii K, Muranaka A. Chem. Eur. J. 2009; 15: 10173
- 39 Makhseed S, Tuhl A, Samuel J, Zimcik P, Al-Awadi N, Novakova V. Dyes Pigm. 2012; 95: 351
- 40 Durmus M, Nyokong T. Polyhedron 2007; 26: 2767