Z Gastroenterol 2021; 59(11): 1205-1213
DOI: 10.1055/a-1500-8420
Übersicht

SARS-CoV-2-Infektion des Verdauungstrakts – Experimentelle Ansätze einer Organoid-basierten in vitro Modellierung

SARS-CoV-2 and the digestive tract – Organoids to model gastrointestinal infection
1   Klinik für Innere Medizin I, Universitätsklinik Ulm, Ulm, Germany,
,
2   Institut für molekulare Virologie, Universitätsklinik Ulm, Ulm, Germany,
,
Jana Krüger
1   Klinik für Innere Medizin I, Universitätsklinik Ulm, Ulm, Germany,
,
Jan Münch
2   Institut für molekulare Virologie, Universitätsklinik Ulm, Ulm, Germany,
,
Martin Müller
1   Klinik für Innere Medizin I, Universitätsklinik Ulm, Ulm, Germany,
,
Alexander Kleger
1   Klinik für Innere Medizin I, Universitätsklinik Ulm, Ulm, Germany,
› Author Affiliations

Zusammenfassung

SARS-CoV-2 ist eine neuartige humanpathogene Coronavirus-Variante, deren Prädilektion für den Atemwegstrakt zu einer raschen pandemischen Verbreitung durch viruspartikelhaltige Aerosole geführt hat. Die individuelle Organsuszeptibilität wird maßgeblich durch die Besatzdichte mit dem membranständigen Rezeptormolekül ACE2 bestimmt, das als zentraler Interaktionspartner für das virale Spike-Protein den Adhäsions- und Fusionsprozess vermittelt und somit die Grundvoraussetzung zur Aufnahme des Virusgenoms in die Wirtszelle schafft. Ausgehend von einem umfangreichen Datensatz klinischer Studien und Fallberichte, gilt es mittlerweile als gesichert, dass auch bestimmte Zellpopulationen des Verdauungstrakts sowie des funktionell angegliederten olfaktorisch-gustatorischen Systems über die erforderliche Rezeptorenausstattung verfügen und somit durch SARS-CoV-2 „angreifbar“ sind. Zahlreiche Berichte über gastrointestinale Beschwerden und Laborabnormalitäten sind als Indizien für relevante Organdysfunktionen zu werten und untermauern die klinische Bedeutsamkeit einer Mitbeteiligung des Verdauungstrakts im Rahmen einer SARS-CoV-2-Infektion. Organoide sind dreidimensional wachsende In-vitro-Replikate von Organgeweben und nehmen insbesondere dank der organtypisch komplexen zellulären Zusammensetzung und Imitation der physiologischen Funktionsweise von Primärzellen einen hohen Stellenwert für die infektiologische Grundlagenforschung ein. Diese Übersichtsarbeit befasst sich thematisch mit den pathophysiologischen Aspekten der Infektion verdauungsrelevanter Organe mit SARS-CoV-2 unter besonderer Würdigung existierender organoid- oder primärzellkulturbasierter Infektionsmodelle und der daraus hervorgegangenen Erkenntnisse.

Abstract

SARS-CoV-2 is a novel human pathogenic coronavirus whose predilection for the respiratory tract has given rise to a rapid pandemic spread via airborne particles. Organ-specific susceptibility is substantially determined by the density of cell surface expression of ACE2, which is exploited by viral spike protein as a receptor molecule to mediate adhesion and, thus, to permit internalization of the viral genome into the host cell. Based on an ample data set derived from clinical studies and case reports, evidence suggests that distinct cell populations of the digestive and olfactory-gustatory system are equally equipped with membrane-bound ACE2, rendering them “vulnerable” to SARS-CoV-2. Numerous reports on concomitant gastrointestinal complaints and laboratory abnormalities are thought to reflect a relevant degree of organ dysfunction and underscore the tropism of SARS-CoV-2 for the digestive tract. Organoids are three-dimensional in vitro replicas of organ tissue which, owing to their organotypic complex cellular composition and functional resemblance to primary cells, are particularly appreciated for basic research in the field of infectious diseases. This review specifically addresses the involvement of digestive organs by SARS-CoV-2 and outlines the significant contribution of organoid- and primary-cell culture-based models to gaining a deeper understanding of the underlying pathophysiological processes.



Publication History

Received: 04 March 2021

Accepted after revision: 25 April 2021

Article published online:
26 July 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Wu JT, Leung K, Leung GM. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. Lancet 2020; 395: 689-697
  • 2 Majumder MS, Mandl KD. Early Transmissibility Assessment of a Novel Coronavirus in Wuhan, China. SSRN [Preprint]. 2020
  • 3 Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA 2020; 323 (13) 1239-1242
  • 4 Wang Q, Qiu Y, Li JY, Zhou ZJ, Liao CH, Ge XY. A Unique Protease Cleavage Site Predicted in the Spike Protein of the Novel Pneumonia Coronavirus (2019-nCoV) Potentially Related to Viral Transmissibility. Virol Sin 2020; 35 (03) 337-339
  • 5 Lukassen S, Chua RL, Trefzer T. et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J 2020; 39 (10) e105114
  • 6 Zhao Y, Zhao Z, Wang Y, Zhou Y, Ma Y, Zuo W. Single-Cell RNA Expression Profiling of ACE2, the Receptor of SARS-CoV-2. Am J Respir Crit Care Med 2020; 202 (05) 756-759
  • 7 Zou X, Chen K, Zou J, Han P, Hao J, Han Z. Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection. Front Med 2020; 14 (02) 185-192
  • 8 Qi F, Qian S, Zhang S, Zhang Z. Single cell RNA sequencing of 13 human tissues identify cell types and receptors of human coronaviruses. Biochem Biophys Res Commun 2020; 526 (01) 135-140
  • 9 Sungnak W, Huang N, Bécavin C. et al. HCA Lung Biological Network. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med 2020; 26 (05) 681-687
  • 10 Hoffmann M, Kleine-Weber H, Schroeder S. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020; 181 (02) 271-280.e8
  • 11 Johnson BA, Xie X, Bailey AL. et al. Loss of furin cleavage site attenuates SARS-CoV-2 pathogenesis. Nature 2021;
  • 12 Kuester D, Lippert H, Roessner A, Krueger S. The cathepsin family and their role in colorectal cancer. Pathol Res Pract 2008; 204 (07) 491-500
  • 13 Menzel K, Hausmann M, Obermeier F. et al. Cathepsins B, L and D in inflammatory bowel disease macrophages and potential therapeutic effects of cathepsin inhibition in vivo. Clin Exp Immunol 2006; 146 (01) 169-80
  • 14 Boudreau F, Lussier CR, Mongrain S. et al. Loss of cathepsin L activity promotes claudin-1 overexpression and intestinal neoplasia. FASEB J 2007; 21 (14) 3853-65
  • 15 Braun E, Sauter D. Furin-mediated protein processing in infectious diseases and cancer. Clin Transl Immunology 2019; 8 (08) e1073
  • 16 Gendron FP, Mongrain S, Laprise P. et al. The CDX2 transcription factor regulates furin expression during intestinal epithelial cell differentiation. Am J Physiol Gastrointest Liver Physiol 2006; 290 (02) G310-8
  • 17 Cantuti-Castelvetri L, Ojha R, Pedro LD. et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science 2020; 370: 856-860
  • 18 Shilts J, Crozier TWM, Greenwood EJD, Lehner PJ, Wright GJ. No evidence for basigin/CD147 as a direct SARS-CoV-2 spike binding receptor. Sci Rep 2021; 11 (01) 413
  • 19 Ibrahim IM, Abdelmalek DH, Elshahat ME, Elfiky AA. COVID-19 spike-host cell receptor GRP78 binding site prediction. J Infect 2020; 80 (05) 554-562
  • 20 Lee AS. Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer 2014; 14 (04) 263-76
  • 21 Chan CP, Siu KL, Chin KT, Yuen KY, Zheng B, Jin DY. Modulation of the unfolded protein response by the severe acute respiratory syndrome coronavirus spike protein. J Virol 2006; 80 (18) 9279-87
  • 22 Chu H, Chan CM, Zhang X. et al. Middle East respiratory syndrome coronavirus and bat coronavirus HKU9 both can utilize GRP78 for attachment onto host cells. J Biol Chem 2018; 293 (30) 11709-11726
  • 23 Sun SH, Chen Q, Gu HJ. et al. A Mouse Model of SARS-CoV-2 Infection and Pathogenesis. Cell Host Microbe 2020; 28 (01) 124-133.e4
  • 24 Salahudeen AA, Choi SS, Rustagi A. et al. Progenitor identification and SARS-CoV-2 infection in human distal lung organoids. Nature 2020; 588: 670-675
  • 25 Monteil V, Kwon H, Prado P. et al. Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2. Cell 2020; 181 (04) 905-913.e7
  • 26 Zhang BZ, Chu H, Han S. et al. SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res 2020; 30 (10) 928-931
  • 27 Lamers MM, Beumer J, van der Vaart J. et al. SARS-CoV-2 productively infects human gut enterocytes. Science 2020; 369: 50-54
  • 28 Zang R, Gomez Castro MF, McCune BT. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci Immunol 2020; 5 (47) eabc3582
  • 29 Zhou J, Li C, Liu X. et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat Med 2020; 26 (07) 1077-1083
  • 30 Yang L, Han Y, Nilsson-Payant BE. et al. A Human Pluripotent Stem Cell-based Platform to Study SARS-CoV-2 Tropism and Model Virus Infection in Human Cells and Organoids. Cell Stem Cell 2020; 27 (01) 125-136.e7
  • 31 Cheung KS, Hung IFN, Chan PPY. et al. Gastrointestinal Manifestations of SARS-CoV-2 Infection and Virus Load in Fecal Samples From a Hong Kong Cohort: Systematic Review and Meta-analysis. Gastroenterology 2020; 159 (01) 81-95
  • 32 Lin L, Jiang X, Zhang Z. et al. Gastrointestinal symptoms of 95 cases with SARS-CoV-2 infection. Gut 2020; 69 (06) 997-1001
  • 33 Jin X, Lian JS, Hu JH. et al. Epidemiological, clinical and virological characteristics of 74 cases of coronavirus-infected disease 2019 (COVID-19) with gastrointestinal symptoms. Gut 2020; 69 (06) 1002-1009 https://doi.org/10.1016/S2468-1253(20)30083-2
  • 34 Weng J, Li Y, Li J. et al. Gastrointestinal sequelae 90 days after discharge for COVID-19. Lancet Gastroenterol Hepatol 2021; 344-346
  • 35 Wu Y, Guo C, Tang L. et al. Prolonged presence of SARS-CoV-2 viral RNA in faecal samples. Lancet Gastroenterol Hepatol 2020; 5 (05) 434-435
  • 36 Chen Y, Chen L, Deng Q. et al. The presence of SARS-CoV-2 RNA in the feces of COVID-19 patients. J Med Virol 2020; 92 (07) 833-840
  • 37 Fu Y, Han P, Zhu R. et al. Risk factors for viral RNA shedding in COVID-19 patients. Eur Respir J 2020; 56 (01) 2001190
  • 38 Wang W, Xu Y, Gao R. et al. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA 2020; 323 (18) 1843-1844
  • 39 Xiao F, Sun J, Xu Y. et al. Infectious SARS-CoV-2 in Feces of Patient with Severe COVID-19. Emerg Infect Dis 2020; 26 (08) 1920-1922
  • 40 Zhang J, Wang S, Xue Y. Fecal specimen diagnosis 2019 novel coronavirus-infected pneumonia. J Med Virol 2020; 92 (06) 680-682
  • 41 Xiao F, Tang M, Zheng X. et al. Evidence for Gastrointestinal Infection of SARS-CoV-2. Gastroenterology 2020; 158 (06) 1831-1833.e3
  • 42 Ong J, Young BE, Ong S. COVID-19 in gastroenterology: a clinical perspective. Gut 2020; 69 (06) 1144-1145
  • 43 Krüger J, Groß R, Conzelmann C. et al. Drug Inhibition of SARS-CoV-2 Replication in Human Pluripotent Stem Cell-Derived Intestinal Organoids. Cell Mol Gastroenterol Hepatol 2020; 11 (04) 935-948
  • 44 Stanifer ML, Kee C, Cortese M. et al. Critical Role of Type III Interferon in Controlling SARS-CoV-2 Infection in Human Intestinal Epithelial Cells. Cell Rep 2020; 32 (01) 107863
  • 45 Verstockt B, Verstockt S, Abdu Rahiman S. et al. Intestinal receptor of SARS-CoV-2 in inflamed IBD tissue seems downregulated by HNF4A in ileum and upregulated by interferon regulating factors in colon. J Crohns Colitis 2020; jjaa185
  • 46 Janowitz T, Gablenz E, Pattinson D. et al. Famotidine use and quantitative symptom tracking for COVID-19 in non-hospitalised patients: a case series. Gut 2020; 69 (09) 1592-1597
  • 47 Freedberg DE, Conigliaro J, Wang TC. et al. Famotidine Use Is Associated With Improved Clinical Outcomes in Hospitalized COVID-19 Patients: A Propensity Score Matched Retrospective Cohort Study. Gastroenterology 2020; 159 (03) 1129-1131.e3
  • 48 Sen Gupta PS, Biswal S, Singha D. et al. Molecular Mechanism of Clinically Oriented Drug Famotidine with the Identified Potential Target of SARS-CoV-2. Preprint.. ChemRxiv 2020;
  • 49 Kiemer L, Lund O, Brunak S, Blom N. Coronavirus 3CLpro proteinase cleavage sites: possible relevance to SARS virus pathology. BMC Bioinformatics 2004; 5: 72
  • 50 Han Y, Duan X, Yang L. et al. Identification of SARS-CoV-2 inhibitors using lung and colonic organoids. Nature 2021; 589: 270-275
  • 51 Parasa S, Desai M, Thoguluva Chandrasekar V. et al. Prevalence of Gastrointestinal Symptoms and Fecal Viral Shedding in Patients With Coronavirus Disease 2019: A Systematic Review and Meta-analysis. JAMA Netw Open 2020; 3 (06) e2011335
  • 52 Wang Y, Liu S, Liu H. et al. SARS-CoV-2 infection of the liver directly contributes to hepatic impairment in patients with COVID-19. J Hepatol 2020; 73 (04) 807-816
  • 53 Li L, Li S, Xu M. et al. Risk factors related to hepatic injury in patients with corona virus disease 2019. medRxiv 2020;
  • 54 Fan Z, Chen L, Li J. et al. Clinical Features of COVID-19-Related Liver Functional Abnormality. Clin Gastroenterol Hepatol 2020; 18 (07) 1561-1566
  • 55 Guan WJ, Ni ZY, Hu Y. et al. China Medical Treatment Expert Group for Covid-19. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med 2020; 382 (18) 1708-1720
  • 56 Wang D, Hu B, Hu C. et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA 2020; 323 (11) 1061-1069
  • 57 Chai X, Hu L, Zhang Y. et al. Specific ACE2 Expression in Cholangiocytes May Cause Liver Damage After 2019-nCoV Infection. bioRxiv 2020;
  • 58 Chau TN, Lee KC, Yao H. et al. SARS-associated viral hepatitis caused by a novel coronavirus: report of three cases. Hepatology 2004; 39 (02) 302-10
  • 59 Xu Z, Shi L, Wang Y. et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med 2020; 8 (04) 420-422
  • 60 Zhang C, Shi L, Wang FS. Liver injury in COVID-19: management and challenges. Lancet Gastroenterol Hepatol 2020; 5 (05) 428-430
  • 61 Zhao B, Ni C, Gao R. et al. Recapitulation of SARS-CoV-2 infection and cholangiocyte damage with human liver ductal organoids. Protein Cell 2020; 11 (10) 771-775
  • 62 Wang F, Wang H, Fan J, Zhang Y, Wang H, Zhao Q. Pancreatic Injury Patterns in Patients With Coronavirus Disease 19 Pneumonia. Gastroenterology 2020; 159 (01) 367-370
  • 63 Hadi A, Werge M, Kristiansen KT. et al. Coronavirus Disease-19 (COVID-19) associated with severe acute pancreatitis: Case report on three family members. Pancreatology 2020; 20 (04) 665-667
  • 64 Aloysius MM, Thatti A, Gupta A, Sharma N, Bansal P, Goyal H. COVID-19 presenting as acute pancreatitis. Pancreatology 2020; 20 (05) 1026-1027
  • 65 Liu F, Long X, Zhang B. et al. ACE2 Expression in Pancreas May Cause Pancreatic Damage After SARS-CoV-2 Infection. Clin Gastroenterol Hepatol 2020; 18 (09) 2128-2130.e2
  • 66 Bode B, Garrett V, Messler J. et al. Glycemic Characteristics and Clinical Outcomes of COVID-19 Patients Hospitalized in the United States. J Diabetes Sci Technol 2020; 14 (04) 813-821
  • 67 Müller JA, Groß R, Conzelmann C. et al. SARS-CoV-2 infects and replicates in cells of the human endocrine and exocrine pancreas. Nat Metab 2021; 3 (02) 149-165
  • 68 Pallanti S. Importance of SARs-Cov-2 anosmia: From phenomenology to neurobiology. Compr Psychiatry 2020; 100: 152184
  • 69 Lechien JR, Chiesa-Estomba CM, De Siati DR. et al. Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study. Eur Arch Otorhinolaryngol 2020; 277 (08) 2251-2261
  • 70 Klingenstein M, Klingenstein S, Neckel PH. et al. Evidence of SARS-CoV2 Entry Protein ACE2 in the Human Nose and Olfactory Bulb. Cells Tissues Organs 2021; 1-10
  • 71 Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008; 82 (15) 7264-75
  • 72 Puelles VG, Lütgehetmann M, Lindenmeyer MT. et al. Multiorgan and Renal Tropism of SARS-CoV-2. N Engl J Med 2020; 383 (06) 590-592
  • 73 Song E, Zhang C, Israelow B. et al. Neuroinvasion of SARS-CoV-2 in human and mouse brain [Preprint]. Update in: J Exp Med. 2021 Mar 1;218(3). bioRxiv 2020;
  • 74 Ettayebi K, Crawford SE, Murakami K. et al. Replication of human noroviruses in stem cell-derived human enteroids. Science 2016; 353: 1387-1393
  • 75 Yin Y, Bijvelds M, Dang W. et al. Modeling rotavirus infection and antiviral therapy using primary intestinal organoids. Antiviral Res 2015; 123: 120-31
  • 76 Latinne A, Hu B, Olival KJ. et al. Origin and cross-species transmission of bat coronaviruses in China [Preprint]. Update in: Nat Commun 2020;11(1):4235. bioRxiv 2020;
  • 77 Xiao K, Zhai J, Feng Y. et al. Isolation of SARS-CoV-2-related coronavirus from Malayan pangolins. Nature 2020; 583: 286-289
  • 78 Menachery VD, Yount BL, Debbink K. et al. Corrigendum: A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence. Nat Med 2016; 22 (04) 446