Subscribe to RSS
DOI: 10.1055/a-1504-8366
Regio- and Stereoselective (SN2) N-, O-, C- and S-Alkylation Using Trialkyl Phosphates
This work was supported by a Grant-in-Aid for Scientific Research S (JP17H06142) from the Japan Society for the Promotion of Science (JSPS).
Abstract
Bimolecular nucleophilic substitution (SN2) is one of the most well-known fundamental reactions in organic chemistry to generate new molecules from two molecules. In principle, a nucleophile attacks from the back side of an alkylating agent having a suitable leaving group, most commonly a halide. However, alkyl halides are expensive, very harmful, toxic and not so stable, which makes them problematic for laboratory use. In contrast, trialkyl phosphates are inexpensive, readily accessible and stable at room temperature, under air, and are easy to handle, but rarely used as alkylating agents in organic synthesis. Here, we describe a mild, straightforward and powerful method for nucleophilic alkylation of various N-, O-, C- and S-nucleophiles using readily available trialkyl phosphates. The reaction proceeds smoothly in excellent yield, and quantitative yield in many cases, and covers a wide range of substrates. Further, the rare stereoselective transfer of secondary alkyl groups has been achieved with inversion of configuration of chiral centers (up to 98% ee).
Key words
trialkyl phosphates - stereoselectivity - SN2 reaction - amides - secondary alkylation - vinyl ethersSupporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1504-8366.
- Supporting Information
Publication History
Received: 13 April 2021
Accepted after revision: 10 May 2021
Accepted Manuscript online:
10 May 2021
Article published online:
02 June 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Hartshorn SR. Aliphatic Nucleophilic Substitution . Cambridge University Press; London: 1973
- 2 Anslyn EV, Dougherty DA. Organic Reaction Mechanisms, Part 2: Substitutions at Aliphatic Centers and Thermal Isomerizations/Rearrangements. In Modern Physical Organic Chemistry, Chap. 11. University Science Books; Sausalito (CA, USA): 2006
- 3 Carey FA, Sundberg RJ. Advanced Organic Chemistry. Part B: Reactions and Synthesis, 5th ed. Springer; New York: 2007: 217-223
- 4 Fu GC. ACS Cent. Sci. 2017; 3: 692
- 5 Huo H, Gorsline BJ, Fu GC. Science 2020; 367: 559
- 6 Mo F, Dong G. Science 2014; 345: 68
- 7 Pronin SV, Reiher CA, Shenvi RA. Nature 2013; 501: 195
- 8 Zhang X, Ren J, Tan SM, Tan D, Lee R, Tan C.-H. Science 2019; 363: 400
- 9 Williamson A. Philos. Mag. 1850; 37: 350
- 10 Smith MB, March J. March’s Advanced Organic Chemistry 2001
- 11 Guo L, Ma X, Fang H, Jia X, Huang Z. Angew. Chem. Int. Ed. 2015; 54: 4023
- 13 Ahn JM, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 18101
- 14 Matier CD, Schwaben J, Peters JC, Fu GC. J. Am. Chem. Soc. 2017; 139: 17707
- 15 Haworth WN. J. Chem. Soc., Trans. 1915; 107: 8
- 16 Tundo P, Selva M. Acc. Chem. Res. 2002; 35: 706
- 17 Meerwein H, Borner P, Fuchs O, Sasse HJ, Schrodt H, Spille J. Chem. Ber. 1956; 89: 2060
- 18 Meerwein H, Hinz G, Hofmann P, Kroning E, Pfeil E. J. Prakt. Chem. 1937; 147: 257
- 19 Wells RJ. J. Chromatogr., A 1999; 843: 1
- 20 Maraš N, Polanc S, Kočevar M. Tetrahedron 2008; 64: 11618
- 21 Billman JH, Radike A, Mundy BW. J. Am. Chem. Soc. 1942; 64: 2977
- 22 Thomas DG, Billman JH, Davis CE. J. Am. Chem. Soc. 1946; 68: 895
- 23 Harada T, Hiramatsu T, Yamaji T. Synth. Commun. 1981; 11: 379
- 24 Jones FW, Osborne GO, Sutherland GJ, Topsom RD, Vaughn J. Chem. Commun. 1966; 18
- 25 Nollar CR, Dutton GR. J. Am. Chem. Soc. 1933; 55: 424
- 26 Toy AD. F. J. Am. Chem. Soc. 1944; 66: 499
- 27 Parker JB, Smith TD. J. Chem. Soc. 1961; 442
- 28 Cocks S, Modro TA. S. Afr. J. Chem. 1988; 41: 56
- 29 Cocks S, Koch KR, Modro TA. J. Org. Chem. 1986; 51: 265
- 30 Asai S, Kato M, Monguchi Y, Sajiki H, Sawama Y. Chem. Commun. 2017; 53: 4787
- 31 Asai S, Ban K, Monguchi Y, Sajiki H, Sawama Y. Synlett 2018; 29: 322
- 32 Kim J, Kim S, Choi G, Lee GS, Kim D, Choi J, Ihee H, Hong SH. Chem. Sci. 2021; 12: 1915
- 33 Wei K, Yang T, Chen Q, Liang S, Yu W. Chem. Commun. 2020; 56: 11685
- 34 Kathuria L, Samuelson AG. Eur. J. Inorg. Chem. 2020; 2372
- 35 Mane RS, Bhanage BM. Adv. Synth. Catal. 2017; 359: 2621
- 36 Ayyangar NR, Choudhary AR, Kalkote UR, Natu AA. Synth. Commun. 1988; 18: 2011
- 37 Engman L. J. Org. Chem. 1993; 58: 2394
- 38 Wang J, Li F, Pei W, Yang M, Wu Y, Ma D, Zhang F, Wang J. Tetrahedron Lett. 2018; 59: 1902
- 39 Sitte NA, Bursch M, Grimme S, Paradies J. J. Am. Chem. Soc. 2019; 141: 159
- 40 Rogova T, Gabriel P, Zavitsanou S, Leitch JA, Duarte F, Dixon J. ACS Catal. 2020; 10: 11438
- 41 Sun Y.-H, Sun T.-Y, Wu Y.-D, Zhang X, Rao Y. Chem. Sci. 2016; 7: 2229
- 42 Sharley DD. S, Williams JM. J. Chem. Commun. 2017; 53: 2020
- 43 Vázquez-Tato MP. Synlett 1993; 506
- 44 Xia Q, Liu X, Zhang Y, Chen C, Chen W. Org. Lett. 2013; 15: 3326
- 45 Braddock DC, Lickiss PD, Rowley BC, Pugh D, Purnomo T, Santhakumar G, Fussell SJ. Org. Lett. 2018; 20: 950
- 46 Marcune BF, Karady S, Reider PJ, Miller RA, Biba M, Reamer RA. J. Org. Chem. 2003; 68: 8088
- 47 Yi H, Niu L, Song C, Li Y, Dou B, Singh AK, Lei A. Angew. Chem. Int. Ed. 2017; 56: 1120
- 48 Léonard NG, Palmer WN, Friedfeld MR, Bezdek M, Chirik PJ. ACS Catal. 2019; 9: 9034
- 49 Suleymanov AA, Scopelliti R, Tirani FF, Severin K. Org. Lett. 2018; 20: 3323
- 50 Martinez-Erro S, Sanz-Marco A, Gómez AB, Vázquez-Romero A, Ahlquist MS. G, Martín-Matute B. J. Am. Chem. Soc. 2016; 138: 13408
- 51 Ladjama D, Riehl JJ. Synthesis 1979; 504
- 52 Stevens CL, Tazuma J. J. Am. Chem. Soc. 1954; 76: 715
- 53 Abele E, Rubina K, Popelis J, Gauhmans A, Lukevics E. Latv. Kim. Z. 1999; 2: 69
- 54 Nerdel F, Kressin H. Justus Liebigs Ann. Chem. 1967; 707: 1
- 55 Majji M, Guin S, Gogoi A, Rout SK, Patel BK. Chem. Commun. 2013; 49: 3031
- 56 Sattenapally N, Wang W, Liu H, Gao Y. Tetrahedron Lett. 2013; 54: 6665
- 57 Liu W, Huang W, Lan T, Qin H, Yang C. Tetrahedron 2018; 74: 2298
- 58 Matsuo J, Odashima K, Kobayashi S. Org. Lett. 1999; 1: 345
- 59 Biegasiewicz KF, Cooper SJ, Emmanuel MA, Miller DC, Hyster TK. Nat. Chem. 2018; 10: 770
- 60 Zhou X, Zhang G, Gao B, Huang H. Org. Lett. 2018; 20: 2208
- 61 Wu X, Cruz FA, Lu A, Dong VM. J. Am. Chem. Soc. 2018; 140: 10126
- 62 Zhu J, Gaob B, Huang H. Org. Biomol. Chem. 2017; 15: 2910
- 63 Deng X.-J, Liu H.-X, Zhang L.-W, Zhang G.-Y, Yu Z.-X, He W. J. Org. Chem. 2021; 86: 235
- 64 Kyasa S, Meier RN, Pardini RA, Truttmann TK, Kuwata KT, Dussault PH. J. Org. Chem. 2015; 80: 12100
- 65 Broggi J, Jurčík V, Songis O, Poater A, Cavallo L, Slawin AM. Z, Cazin CS. J. J. Am. Chem. Soc. 2013; 135: 4588
- 66 Zhu Y, Xiong T, Han W, Shi Y. Org. Lett. 2014; 16: 6144
- 67 Azzena U, Pisano L, Antonello S, Maran F. J. Org. Chem. 2009; 74: 8064
- 68 Halima TB, Masson-Makdissi J, Newman SG. Angew. Chem. Int. Ed. 2018; 57: 12925
- 69 Kanta De C, Klauber EG, Seidel D. J. Am. Chem. Soc. 2009; 131: 17060
- 70 Liu X.-Y, Che C.-M. Org. Lett. 2009; 11: 4204
- 71 Jiang W, Li N, Zhou L, Zeng Q. ACS Catal. 2018; 8: 9899
- 72 Gui Y, Tian S.-K. Org. Lett. 2017; 19: 1554
- 73 Maas S, Stamm A, Kunz H. Synthesis 1999; 1792