Subscribe to RSS
DOI: 10.1055/a-1511-0435
Ligand-Free Palladium-Catalyzed Carbonylative Suzuki Couplings of Vinyl Iodides with Arylboronic Acids under Substoichiometric Base Conditions
The work was sponsored by the Natural Science Foundation of China (21776139, 21302099), the Natural Science Foundation of Jiangsu Province (BK20161553), the Natural Science Foundation of Jiangsu Provincial Colleges and Universities (16KJB150019), the China Scholarship Council, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

Abstract
A ligand-free palladium-catalyzed carbonylation of vinyl iodides with arylboronic acids, permitting the synthesis of chalcones and α-branched enones, has been established. This reaction proceeds smoothly at ambient pressure and temperature, and works well even with a substoichiometric amount of base. Importantly, this mild, efficient, and operationally simple protocol is suitable for the late-stage functionalization of an epiandrosterone-derived complex molecule.
Key words
platinum catalysis, vinyl iodides, arylboronic acids, chalcones, enones, Suzuki–Miyaura reaction
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1511-0435.
- Supporting Information
Publication History
Received: 19 April 2021
Accepted after revision: 18 May 2021
Accepted Manuscript online:
18 May 2021
Article published online:
08 June 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References and Notes
- 1a Bhattacherjee D, Rahman M, Ghosh S, Bagdi AK, Zyryanov GV, Chupakhin ON, Das P, Hajra A. Adv. Synth. Catal. 2021; 363: 1597
- 1b Söğütlü I, Mahmood EA, Shendy SA, Ebrahimiasl S, Vessally E. RSC Adv. 2021; 11: 2112
- 2a Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
- 2b Wu X.-F, Neumann H, Beller M. Chem. Soc. Rev. 2011; 40: 4986
- 2c Grigg R, Mutton SP. Tetrahedron 2010; 66: 5515
- 2d Brennführer A, Neumann H, Beller M. Angew. Chem. Int. Ed. 2009; 48: 4114
- 2e Ishiyama T, Kizaki H, Miyaura N, Suzuki A. Tetrahedron Lett. 1993; 34: 7595
- 2f Wójcik P, Sygellou L, Gniewek A, Skarżyńska A, Trzeciak A. ChemCatChem 2017; 9: 4397
- 2g Mansour W, Fettouhi M, El Ali B. Appl. Organomet. Chem. 2020; 34: e5636
- 2h Neumann H, Brennführer A, Beller M. Chem. Eur. J. 2008; 14: 3645
- 2i Gautam P, Dhiman M, Polshettiwar V, Bhanage BM. Green Chem. 2016; 18: 5890
- 2j Cai M, Peng J, Hao W, Ding G. Green Chem. 2011; 13: 190
- 2k O’Keefe BM, Simmons N, Martin SF. Org. Lett. 2008; 10: 5301
- 2l Dai M, Liang B, Wang C, You Z, Xiang J, Dong G, Chen J, Yang Z. Adv. Synth. Catal. 2004; 346: 1669
- 2m Wójcik P, Mart M, Ulukanli S, Trzeciak AM. RSC Adv. 2016; 6: 36491
- 2n Li H, Yang M, Qi Y, Xue J. Eur. J. Org. Chem. 2011; 2011: 2662
- 2o Xia M, Chen Z. J. Chem. Res., Synop. 1999; 400
- 3a Damazio RG, Zanatta AP, Cazarolli LH, Chiaradia LD, Mascarello A, Nunes RJ, Yunes RA, Barreto Silva FR. M. Eur. J. Med. Chem. 2010; 45: 1332
- 3b Das U, Doroudi A, Gul HI, Pati HN, Kawase M, Sakagami H, Chu Q, Stables JP, Dimmock JR. Bioorg. Med. Chem. 2010; 18: 2219
- 3c Grealis JP, Müller-Bunz H, Ortin Y, Casey M, McGlinchey MJ. Eur. J. Org. Chem. 2013; 2013: 332
- 3d Juvale K, Pape VF. S, Wiese M. Bioorg. Med. Chem. 2012; 20: 346
- 3e Leow P.-C, Bahety P, Boon CP, Lee CY, Tan KL, Yang T, Ee P.-LR. Eur. J. Med. Chem. 2014; 71: 67
- 4a Schacht M, Mohammadi D, Schützenmeister N. Eur. J. Org. Chem. 2019; 2019: 2587
- 4b de Robichon M, Bordessa A, Lubin-Germain N, Ferry A. J. Org. Chem. 2019; 84: 3328
- 4c Bartali L, Guarna A, Larini P, Occhiato EG. Eur. J. Org. Chem. 2007; 2007: 2152
- 4d Larini P, Guarna A, Occhiato EG. Org. Lett. 2006; 8: 781
- 5a Woltersdorf OW. Jr, Robb CM, Bicking JB, Watson LS, Cragoe EJ. Jr. J. Med. Chem. 1976; 19: 972
- 5b Sim Y.-K, Lee H, Park J.-W, Kim D.-S, Jun C.-H. Chem. Commun. 2012; 48: 11787
- 5c Henary M, Kananda C, Rotolo L, Savino B, Owens EA, Cravotto G. RSC Adv. 2020; 10: 14170
- 5d Höld KM, Sirisoma NS, Sparks SE, Casida JE. Xenobiotica 2002; 32: 251
- 5e Maggio A, Rosselli S, Brancazio CL, Safder M, Spadaro V, Bruno M. Tetrahedron Lett. 2011; 52: 4543
- 5f Fu N, Zhang L, Luo S, Cheng J.-P. Org. Chem. Front. 2014; 1: 68
- 6a Claisen L, Claparède A. Ber. Dtsch. Chem. Ges. 1881; 14: 2460
- 6b Schmidt JG. Ber. Dtsch. Chem. Ges. 1881; 14: 1459
- 6c Nielsen AT, Houlihan WJ. Org. React (N. Y.) 2011; 16: 1
- 6d Mukaiyama T. Org. React (N. Y.) 1982; 28: 203
- 6e Zhong Q. Yingyong Huaxue 1990; 7: 89
- 6f Iranpoor N, Kazemi F. Tetrahedron 1998; 54: 9475
- 6g Nakano T, Irifune S, Umano S, Inada A, Ishii Y, Ogawa M. J. Org. Chem. 1987; 52: 2239
- 6h Zhu Y, Pan Y. Chem. Lett. 2004; 33: 668
- 6i Kwon MS, Kim N, Seo SH, Park IS, Cheedrala RK, Park J. Angew. Chem. Int. Ed. 2005; 44: 6913
- 6j Yamada YM. A, Uozumi Y. Tetrahedron 2007; 63: 8492
- 7a Wu X.-F, Neumann H, Beller M. Angew. Chem. Int. Ed. 2010; 49: 5284
- 7b Wu X.-F, Neumann H, Spannenberg A, Schulz T, Jiao H, Beller M. J. Am. Chem. Soc. 2010; 132: 14596
- 7c Wu X.-F, Neumann H, Beller M. Chem. Asian J. 2012; 7: 282
- 7d Sumino S, Ui T, Hamada Y, Fukuyama T, Ryu I. Org. Lett. 2015; 17: 4952
- 7e Gøgsig TM, Nielsen DU, Lindhardt AT, Skrydstrup T. Org. Lett. 2012; 14: 2536
- 7f Hermange P, Gøgsig TM, Lindhardt AT, Taaning RH, Skrydstrup T. Org. Lett. 2011; 13: 2444
- 8 Geng H.-Q, Wang L.-C, Hou C.-Y, Wu X.-F. Org. Lett. 2020; 22: 1160
- 9a Zhao H, Du H, Yuan X, Wang T, Han W. Green Chem. 2016; 18: 5782
- 9b Xu F, Li D, Han W. Green Chem. 2019; 21: 2911
- 9c Jin F, Han W. Chem. Commun. 2015; 51: 9133
- 9d Zhong Y, Han W. Chem. Commun. 2014; 50: 3874
- 9e Yu D, Xu F, Li D, Han W. Adv. Synth. Catal. 2019; 361: 3102
- 9f Zhou Q, Wei S, Han W. J. Org. Chem. 2014; 79: 1454
- 9g Zhong Y, Gong X, Zhu X, Ni Z, Wang H, Fu J, Han W. RSC Adv. 2014; 4: 63216
- 9h Han W, Liu B, Chen J, Zhou Q. Synlett 2017; 28: 835
- 9i Cheng L, Zhong Y, Ni Z, Du H, Jin F, Rong Q, Han W. RSC Adv. 2014; 4: 44312
- 10 Poly(ethylene glycol) (PEG) is often used as a good phase-transfer agent. This property favors gas–liquid–solid multiphase catalytic reactions. Additionally, PEG is a highly polar solvent that is capable of strongly solvating polar molecules such as carbon monoxide to reduce mass-transfer resistance. These two positive properties probably permit PEG to show excellent performance in the current transformation.
- 11 (2E)-3-(4-Methoxyphenyl)-1-phenylprop-2-en-1-one (3aa); Typical Procedure A 25 mL flask was charged with Pd(OAc)2 (0.005 mmol, 1.2 mg), 1-[(E)-2-iodovinyl]-4-methoxybenzene (1a; 0.25 mmol, 65.0 mg), PhB(OH)2 (2a; 0.375 mmol, 45.8 mg), K3PO4 (0.25 mmol, 54.7 mg), and PEG-400 (2.0 g), and was then subjected to standard cycles of evacuation and backfilling with dry pure CO. The mixture was stirred at RT and atmospheric pressure (CO balloon) for 3 h. The mixture was then extracted with Et2O (3 × 15 mL) and the organic phases were combined and concentrated under reduced pressure. The crude product was purified by column chromatography [silica gel, PE–Et2O (100:1 to 10:4)] to give a light-yellow solid; yield: 54 mg (92%; E/Z >99:1). 1H NMR (400 MHz, CDCl3): δ = 8.04 (d, J = 8.4 Hz, 2 H), 7.82 (d, J = 15.6 Hz, 1 H), 7.63 (d, J = 8.4 Hz, 2 H), 7.59 (d, J = 7.2 Hz, 1 H), 7.52 (t, J = 7.6 Hz, 2 H), 7.45 (d, J = 15.6 Hz, 1 H), 6.96 (d, J = 8.8 Hz, 2 H), 3.88 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 190.6, 161.6, 144.7, 138.3, 132.6, 130.2, 128.5, 128.4, 127.4, 119.6, 114.3, 55.4.