Subscribe to RSS
DOI: 10.1055/a-1514-1618
Role of miRNAs in Breast Cancer-induced Bone Disease
Die Bedeutung der miRNA bei Mammakarzinom-induzierten KnochenmetastasenAbstract
Bone is the most common site of breast cancer recurrence. Despite the increasing knowledge about the metastatic process and treatment advances, the disease still remains incurable once the cancer cells actively proliferate in bone. Complex interactions between cancer cells and cells of the bone microenvironment (BME) regulate the initiation and progression of metastatic tumor growth in bone. In particular, breast cancer cells shift the otherwise tightly balanced bone remodeling towards increased bone resorption by osteoclasts. Cellular interactions in the metastatic BME are to a large extent regulated by secreted molecules. These include various cytokines as well as microRNAs (miRNAs), small non-coding RNAs that post transcriptionally regulate protein abundance in several cell types. Through this mechanism, miRNAs modulate physiological and pathological processes including bone remodeling, tumorigenesis and metastasis. Consequently, miRNAs have been identified as important regulators of cellular communication in the metastatic BME. Disruption of the crosstalk between cancer cells and the BME has emerged as a promising therapeutic target to prevent the establishment and progression of breast cancer bone metastasis. In this context, miRNA mimics or antagonists present innovative therapeutic approaches of high potential for interfering with pathological bone – cancer cell interactions. This review will discuss the role of miRNAs in the tumor-BME crosstalk in vivo and will emphasize how this could be targeted by miRNAs to improve therapeutic outcome for patients with breast cancer bone metastases.
Zusammenfassung
Beginnt ein Brustkrebs zu metastasieren, streuen die Tumorzellen häufig in die Knochen. Trotz zunehmender Kenntnisse über den Metastasierungsprozess und fortschreitender Therapiemöglichkeiten bleibt die Krankheit dennoch unheilbar, sobald Krebszellen im Knochen proliferieren und dort Metastasen ausbilden. Komplexe molekulare und zelluläre Interaktionen zwischen Tumorzellen und Zellen des Knochenmilieus regulieren die Initiierung und das Fortschreiten des Wachstums der Metastasen im Knochen. Dabei verlagern Brustkrebszellen das eng regulierte Gleichgewicht des Knochenauf- und -Abbaus zu einem erhöhten Knochenabbau durch Osteoklasten. Zelluläre Interaktionen in einem durch Metastasen gestörten Knochenmilieu werden durch verschiedene Moleküle reguliert; dazu zählen u. a. Zytokine sowie MicroRNAs (miRNAs). MiRNAs sind kurze, nicht-kodierende RNA Sequenzen, die an spezifische Zielsequenzen kodierender mRNAs binden und diese einer Degradierung zuführen. Ferner können miRNAs die Proteinbiosynthese von Ziel-mRNAs unterbinden und über diese beiden Mechanismen die Konzentration der entsprechenden Proteine reduzieren. Auf der Grundlage dieser Mechanismen können miRNAs neben physiologischen Mechanismen, auch krankhafte Prozesse einschließlich der Tumorentstehung, der Metastasierung und des durch Metastasen gestörten Knochenumbaus beeinflussen. Diese Erkenntnisse etablieren miRNAs als wichtige Regulatoren der zellulären Kommunikation des metastatischen Knochenmilieus. Folglich hat sich die Unterbrechung dieses Mechanismus und damit des zellulären Austauschs zwischen Tumorzellen und dem umgebenden Knochenmilieu auch als möglicher Therapieansatz herausgestellt. Durch diesen Ansatz ließe sich die Initiierung und das Voranschreiten von Brustkrebsmetastasen im Knochen reduzieren oder die Zerstörung des Knochens behandeln. Deshalb ist die Behandlung von Krebspatienten mit miRNA Mimetika oder Antagonisten ein vielversprechender therapeutischer Ansatz für eine etwaige zukünftige Verbesserung der Krebstherapie. RNA-Interferenz als Behandlungsprinzip ist bereits in der Klinik (s. Hesse et al. in dieser Ausgabe der Osteologie), Delivery-Methoden sind auch im Rahmen moderner Impfstrategien bereits erprobt. Insofern ist die Technologie verfügbar und nach fundierten präklinischen Studien könnte der Weg in die Translation sehr schnell beschritten werden. Um diese neuartigen Entwicklungen darzustellen, diskutiert dieser Review Artikel die Bedeutung von miRNAs im Tumor-Knochenmilieu in vivo und wie diese Interaktionen durch die Verwendung von miRNAs modifiziert werden können. Ferner wird aufgezeigt, wie diese pharmakologischen Interventionen den Behandlungserfolg von Patienten mit Brustkrebsmetastasen im Knochen verbessern könnten.
Publication History
Received: 11 May 2021
Accepted: 26 May 2021
Article published online:
17 September 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020. CA Cancer J Clin 2020; 70: 7-30
- 2 SEER 18. 2010–2016, All Races, Females by SEER Summary Stage 2000
- 3 Roodman GD. Mechanisms of bone metastasis. Discov Med 2004; 4: 144-148
- 4 Reddington JA, Mendez GA, Ching A, Kubicky CD, Klimo P, Ragel BT. Imaging characteristic analysis of metastatic spine lesions from breast, prostate, lung, and renal cell carcinomas for surgical planning: Osteolytic versus osteoblastic. Surg Neurol Int. 2016 7. S361-S365 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27274410
- 5 Hashimoto K, Ochi H, Sunamura S, Kosaka N, Mabuchi Y, Fukuda T. et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci U S A. 2018 115. 2204-2209 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29440427
- 6 D’Oronzo S, Coleman R, Brown J, Silvestris F. Metastatic bone disease: Pathogenesis and therapeutic options: Up-date on bone metastasis management. J bone Oncol. 2019 15. 004-004 Available from: https://linkinghub.elsevier.com/retrieve/pii/S2212137418302586
- 7 Parfitt AM. The bone remodeling compartment: a circulatory function for bone lining cells, Vol. 16 Journal of bone and mineral research: the official journal of the American Society for Bone and Mineral Research. United States: 2001. 1583-1585
- 8 Nakamura H. Morphology, Function, and Differentiation of Bone Cells. J Hard Tissue Biol 2007; 16: 15-22
- 9 Guise TA, Kozlow WM, Heras-Herzig A, Padalecki SS, Yin JJ, Chirgwin JM. Molecular mechanisms of breast cancer metastases to bone. Clin Breast Cancer 2005; 5 Suppl: S46-S53
- 10 Eyre R, Alférez DG, Santiago-Gómez A, Spence K, McConnell JC, Hart C. et al. Microenvironmental IL1β promotes breast cancer metastatic colonisation in the bone via activation of Wnt signalling. Nat Commun 2019; 10: 5016
- 11 Luo X, Fu Y, Loza AJ, Murali B, Leahy KM, Ruhland MK. et al. Stromal-Initiated Changes in the Bone Promote Metastatic Niche Development. Cell Rep 2016; 14: 82-92
- 12 Haider M-T, Saito H, Zarrer J, Uzhunnumpuram K, Nagarajan S, Kari V. et al. Breast cancer bone metastases are attenuated in a Tgif1-deficient bone microenvironment. Breast Cancer Res 2020; 22: 34
- 13 Paget S. The distribution of secondary growths in cancer of the breast. Lancet 1889; 571-573
- 14 Siddiqui JA, Partridge NC. Physiological Bone Remodeling: Systemic Regulation and Growth Factor Involvement. Physiology 2016; 31: 233-245
- 15 Hofbauer LC, Bozec A, Rauner M, Jakob F, Perner S, Pantel K. Novel approaches to target the microenvironment of bone metastasis. Nat Rev Clin Oncol. 2021 Available from: http://www.ncbi.nlm.nih.gov/pubmed/33875860
- 16 Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. Protein Cell 2020; 11: 34-44
- 17 Hwang NS, Zhang C, Hwang Y-S, Varghese S. Mesenchymal stem cell differentiation and roles in regenerative medicine. WIREs Syst Biol Med 2009; 1: 97-106
- 18 Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 2014; 507: 323-328
- 19 Zarrer J, Haider M-T, Smit DJ, Taipaleenmäki H. Pathological Crosstalk between Metastatic Breast Cancer Cells and the Bone Microenvironment. Biomolecules. 2020 10. Available from: http://www.ncbi.nlm.nih.gov/pubmed/32092997
- 20 Allocca G, Hughes R, Wang N, Brown HK, Ottewell PD, Brown NJ. et al. The bone metastasis niche in breast cancer-potential overlap with the haematopoietic stem cell niche. J Bone Oncol. 2019 17. 100244 Available from: https://www.ncbi.nlm.nih.gov/pubmed/31236323
- 21 Butler JM, Kobayashi H, Rafii S. Instructive role of the vascular niche in promoting tumour growth and tissue repair by angiocrine factors. Nat Rev Cancer. 2010 10. 138-146 Available from: http://www.ncbi.nlm.nih.gov/pubmed/20094048
- 22 Templeton ZS, Lie W-R, Wang W, Rosenberg-Hasson Y, Alluri RV, Tamaresis JS. et al. Breast Cancer Cell Colonization of the Human Bone Marrow Adipose Tissue Niche. Neoplasia. 2015 17. 849-861 Available from: http://linkinghub.elsevier.com/retrieve/pii/S1476558615001426
- 23 Price TT, Burness ML, Sivan A, Warner MJ, Cheng R, Lee CH. et al. Dormant breast cancer micrometastases reside in specific bone marrow niches that regulate their transit to and from bone. Sci Transl Med. 2016 8. 340ra73-340ra73 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27225183
- 24 Phadke PA, Mercer RR, Harms JF, Jia Y, Frost AR, Jewell JL. et al. Kinetics of Metastatic Breast Cancer Cell Trafficking in Bone. Clin Cancer Res. 2006 12. 1431-1440 Available from: http://www.ncbi.nlm.nih.gov/pubmed/16533765
- 25 Haider M-T, Holen I, Dear TN, Hunter K, Brown HK. Modifying the osteoblastic niche with zoledronic acid in vivo-potential implications for breast cancer bone metastasis. Bone. 2014 66. 240-250 Available from: http://linkinghub.elsevier.com/retrieve/pii/S8756328214002324
- 26 Kolb AD, Shupp AB, Mukhopadhyay D, Marini FC, Bussard KM. Osteoblasts are “educated” by crosstalk with metastatic breast cancer cells in the bone tumor microenvironment. Breast Cancer Res. 2019 21. 31 Available from: https://www.ncbi.nlm.nih.gov/pubmed/30813947
- 27 Bussard KM, Venzon DJ, Mastro AM. Osteoblasts are a major source of inflammatory cytokines in the tumor microenvironment of bone metastatic breast cancer. In: J Cell Biochem. 2010
- 28 Wang H, Yu C, Gao X, Welte T, Muscarella AM, Tian L. et al. The osteogenic niche promotes early-stage bone colonization of disseminated breast cancer cells. Cancer Cell. 2015 27. 193-210 Available from: http://linkinghub.elsevier.com/retrieve/pii/S1535610814004681
- 29 Rodan GA, Fleisch HA. Bisphosphonates: mechanisms of action. J Clin Invest 1996; 97: 2692-2696
- 30 Fleisch H. The role of bisphosphonates in breast cancer: Development of bisphosphonates. Breast Cancer Res 2002; 4: 30-34
- 31 Azim HA, Kamal NS, Azim HA. Bone metastasis in breast cancer: The story of RANK-Ligand. J Egypt Natl Canc Inst 2012; 24: 107-114
- 32 Hanley DA, Adachi JD, Bell A, Brown V. Denosumab: mechanism of action and clinical outcomes. Int J Clin Pract 2012; 66: 1139-1146
- 33 Dougall W, Chaisson M. [Monoclonal antibody targeting RANKL as a therapy for cancer-induced bone diseases]. Clin Calcium 2006; 16: 627-635
- 34 Suvannasankha A, Chirgwin JM. Role of bone-anabolic agents in the treatment of breast cancer bone metastases. Breast Cancer Res. 2014 16. 484 Available from: http://www.ncbi.nlm.nih.gov/pubmed/25757219
- 35 Cranney A, Papaioannou A, Zytaruk N, Hanley D, Adachi J, Goltzman D. et al. Parathyroid hormone for the treatment of osteoporosis: a systematic review. CMAJ 2006; 175: 52-59
- 36 Cosman F, Crittenden DB, Adachi JD, Binkley N, Czerwinski E, Ferrari S. et al. Romosozumab Treatment in Postmenopausal Women with Osteoporosis. N Engl J Med. 2016 375. 1532-1543 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27641143
- 37 Minisola S, Cipriani C, Della GrottaG, Colangelo L, Occhiuto M, Biondi P. et al. Update on the safety and efficacy of teriparatide in the treatment of osteoporosis. Ther Adv Musculoskelet Dis 2019; 11: 1759720X19877994
- 38 Hesse E, Schröder S, Brandt D, Pamperin J, Saito H, Taipaleenmäki H. Sclerostin inhibition alleviates breast cancer–induced bone metastases and muscle weakness. JCI Insight. 2019 4. e125543 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30965315
- 39 Beermann J, Piccoli M-T, Viereck J, Thum T. Non-coding RNAs in Development and Disease: Background, Mechanisms, and Therapeutic Approaches. Physiol Rev 2016; 96: 1297-1325
- 40 Beadle GW, Tatum EL. Genetic Control of Biochemical Reactions in Neurospora. Proc Natl Acad Sci U S A 1941; 27: 499-506
- 41 Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843-854
- 42 Wightman B, Ha I, Ruvkun G. Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993; 75: 855-862
- 43 Hwang H-W, Mendell JT. MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 2006; 94: 776-780
- 44 Wang J, Li M, Han X, Wang H, Wang X, Ma G. et al. MiR-1976 knockdown promotes epithelial–mesenchymal transition and cancer stem cell properties inducing triple-negative breast cancer metastasis. Cell Death Dis 2020; 11: 500
- 45 Surapaneni SK, Bhat ZR, Tikoo K. MicroRNA-941 regulates the proliferation of breast cancer cells by altering histone H3 Ser 10 phosphorylation. Sci Rep 2020; 10: 17954
- 46 Bottani M, Banfi G, Lombardi G. Perspectives on miRNAs as Epigenetic Markers in Osteoporosis and Bone Fracture Risk: A Step Forward in Personalized Diagnosis. Frontiers in Genetics 2019; 10: 1044
- 47 Miao J, Wu S, Peng Z, Tania M, Zhang C. MicroRNAs in osteosarcoma: diagnostic and therapeutic aspects. Tumour Biol J Int Soc Oncodevelopmental. Biol Med 2013; 34: 2093-2098
- 48 Cai W-L, Huang W-D, Li B, Chen T-R, Li Z-X, Zhao C-L. et al. microRNA-124 inhibits bone metastasis of breast cancer by repressing Interleukin-11. Mol Cancer. 2018 17. 9 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29343249
- 49 Du Y, Zhang J, Meng Y, Huang M, Yan W, Wu Z. MicroRNA-143 targets MAPK3 to regulate the proliferation and bone metastasis of human breast cancer cells. AMB Express 2020; 10: 134
- 50 Ell B, Mercatali L, Ibrahim T, Campbell N, Schwarzenbach H, Pantel K. et al. Tumor-induced osteoclast miRNA changes as regulators and biomarkers of osteolytic bone metastasis. Cancer Cell. 2013 24. 542-556 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3832956&tool=pmcentrez&rendertype=abstract
- 51 Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases – Complex signatures for multifactorial diseases? Mol Cell Endocrinol. 2016 432. 83-95 Available from: http://www.ncbi.nlm.nih.gov/pubmed/26525415
- 52 Ye Z-B, Ma G, Zhao Y-H, Xiao Y, Zhan Y, Jing C. et al. miR-429 inhibits migration and invasion of breast cancer cells in vitro. Int J Oncol 2015; 46: 531-538
- 53 Croset M, Pantano F, Kan CWS, Bonnelye E, Descotes F, Alix-Panabières C. et al. miRNA-30 Family Members Inhibit Breast Cancer Invasion, Osteomimicry, and Bone Destruction by Directly Targeting Multiple Bone Metastasis–Associated Genes. Cancer Res. 2018 78. 5259-5273 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30042152
- 54 Tavazoie SF, Alarcón C, Oskarsson T, Padua D, Wang Q, Bos PD. et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature 2008; 451: 147-152
- 55 Taipaleenmäki H. Regulation of Bone Metabolism by microRNAs. Curr Osteoporos Rep. 2018 16. 1-12 Available from: http://www.ncbi.nlm.nih.gov/pubmed/29335833
- 56 Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007 9. 654-659 Available from: http://www.ncbi.nlm.nih.gov/pubmed/17486113
- 57 Liu X, Cao M, Palomares M, Wu X, Li A, Yan W. et al. Metastatic breast cancer cells overexpress and secrete miR-218 to regulate type I collagen deposition by osteoblasts. Breast Cancer Res. 2018 20. 127 Available from: http://www.ncbi.nlm.nih.gov/pubmed/30348200
- 58 Seo S, Moon Y, Choi J, Yoon S, Jung KH, Cheon J. et al. The GTP binding activity of transglutaminase 2 promotes bone metastasis of breast cancer cells by downregulating microRNA-205. Am J Cancer Res 2019; 9: 597-607
- 59 Huang L, Xu A-M, Liu W. Transglutaminase 2 in cancer. Am J Cancer Res 2015; 5: 2756-2776
- 60 Maroni P, Puglisi R, Mattia G, Carè A, Matteucci E, Bendinelli P. et al. In bone metastasis miR-34a-5p absence inversely correlates with Met expression, while Met oncogene is unaffected by miR-34a-5p in non-metastatic and metastatic breast carcinomas. Carcinogenesis. 2017 38. 492-503 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28334277
- 61 Hashimoto K, Ochi H, Sunamura S, Kosaka N, Mabuchi Y, Fukuda T. et al. Cancer-secreted hsa-miR-940 induces an osteoblastic phenotype in the bone metastatic microenvironment via targeting ARHGAP1 and FAM134A. Proc Natl Acad Sci U S A 2018; 115: 2204-2209
- 62 Png KJ, Halberg N, Yoshida M, Tavazoie SF. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature. 2012 481. 190-194 Available from: http://www.ncbi.nlm.nih.gov/pubmed/22170610
- 63 Cawthorn WP, Bree AJ, Yao Y, Du B, Hemati N, Martinez-Santibañez G. et al. Wnt6, Wnt10a and Wnt10b inhibit adipogenesis and stimulate osteoblastogenesis through a β-catenin-dependent mechanism. Bone 2012; 50: 477-489
- 64 Dey N, Barwick BG, Moreno CS, Ordanic-Kodani M, Chen Z, Oprea-Ilies G. et al. Wnt signaling in triple negative breast cancer is associated with metastasis. BMC Cancer 2013; 13: 537
- 65 Hassan MQ, Maeda Y, Taipaleenmaki H, Zhang W, Jafferji M, Gordon JAR. et al. miR-218 directs a Wnt signaling circuit to promote differentiation of osteoblasts and osteomimicry of metastatic cancer cells. J Biol Chem. 2012 287. 42084-42092 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3516754&tool=pmcentrez&rendertype=abstract
- 66 Taipaleenmäki H, Farina NH, van Wijnen AJ, Stein JL, Hesse E, Stein GS. et al. Antagonizing miR-218-5p attenuates Wnt signaling and reduces metastatic bone disease of triple negative breast cancer cells. Oncotarget. 2016 7. 79032-79046 Available from: http://www.ncbi.nlm.nih.gov/pubmed/27738322
- 67 Gaddy-Kurten D, Coker JK, Abe E, Jilka RL, Manolagas SC. Inhibin Suppresses and Activin Stimulates Osteoblastogenesis and Osteoclastogenesis in Murine Bone Marrow Cultures. Endocrinology 2002; 143: 74-83
- 68 Yu J, Lei R, Zhuang X, Li X, Li G, Lev S. et al. MicroRNA-182 targets SMAD7 to potentiate TGFβ-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun 2016; 7: 13884
- 69 Liu J, Li D, Dang L, Liang C, Guo B, Lu C. et al. Osteoclastic miR-214 targets TRAF3 to contribute to osteolytic bone metastasis of breast cancer. Sci Rep. 2017 7. 40487 Available from: http://www.ncbi.nlm.nih.gov/pubmed/28071724
- 70 Lynch CC. Matrix metalloproteinases as master regulators of the vicious cycle of bone metastasis. Bone 2011; 48: 44-53
- 71 Zhang X, Yu X, Zhao Z, Yuan Z, Ma P, Ye Z. et al. MicroRNA-429 inhibits bone metastasis in breast cancer by regulating CrkL and MMP-9. Bone 2020; 130: 115139
- 72 Tan C-C, Li G-X, Tan L-D, Du X, Li X-Q, He R. et al. Breast cancer cells obtain an osteomimetic feature via epithelial-mesenchymal transition that have undergone BMP2/RUNX2 signaling pathway induction. Oncotarget 2016; 7: 79688-79705
- 73 Taipaleenmäki H, Browne G, Akech J, Zustin J, van Wijnen AJ, Stein JL. et al. Targeting of Runx2 by miR-135 and miR-203 Impairs Progression of Breast Cancer and Metastatic Bone Disease. Cancer Res. 2015 75. 1433-1444 Available from: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4383679&tool=pmcentrez&rendertype=abstract
- 74 Valencia K, Luis-Ravelo D, Bovy N, Antón I, Martínez-Canarias S, Zandueta C. et al. miRNA cargo within exosome-like vesicle transfer influences metastatic bone colonization. Mol Oncol. 2014 8. 689-703 Available from: http://doi.wiley.com/10.1016/j.molonc.2014.01.012
- 75 Ono M, Kosaka N, Tominaga N, Yoshioka Y, Takeshita F, Takahashi R. et al. Exosomes from bone marrow mesenchymal stem cells contain a microRNA that promotes dormancy in metastatic breast cancer cells. Sci Signal 2014; 7: ra63
- 76 Lim PK, Bliss SA, Patel SA, Taborga M, Dave MA, Gregory LA. et al. Gap junction-mediated import of microRNA from bone marrow stromal cells can elicit cell cycle quiescence in breast cancer cells. Cancer Res 2011; 71: 1550-1560
- 77 Sugiyama T, Kohara H, Noda M, Nagasawa T. Maintenance of the hematopoietic stem cell pool by CXCL12-CXCR4 chemokine signaling in bone marrow stromal cell niches. Immunity 2006; 25: 977-988
- 78 Shiozawa Y, Pedersen EA, Havens AM, Jung Y, Mishra A, Joseph J. et al. Human prostate cancer metastases target the hematopoietic stem cell niche to establish footholds in mouse bone marrow. J Clin Invest. 2011 121. 1298-1312 Available from: http://www.jci.org/articles/view/43414
- 79 Kang Y, Siegel PM, Shu W, Drobnjak M, Kakonen SM, Cordón-Cardo C. et al. A multigenic program mediating breast cancer metastasis to bone. Cancer Cell. 2003 3. 537-549 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12842083
- 80 Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA. et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005; 201: 1307-1318