Osteologie 2021; 30(03): 222-229
DOI: 10.1055/a-1514-1800
Review

The Role of microRNAs in Osteoporosis Diagnostics

Die Bedeutung von mikroRNAs in der Osteoporosediagnostik
Matthias Hackl
1   TAmiRNA GmbH, Vienna, Austria
3   Austrian Cluster for Tissue Regeneration, Austria
,
Elisabeth Semmelrock
1   TAmiRNA GmbH, Vienna, Austria
,
Johannes Grillari
2   Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA research center, Vienna, Austria
3   Austrian Cluster for Tissue Regeneration, Austria
4   Institute of Molecular Biotechnology, Department of Biotechnology, BOKU – University of Natural Resources and Life Sciences Vienna, Vienna, Austria
› Author Affiliations

Abstract

MicroRNAs (miRNAs) are short (18–24 nucleotides) non-coding RNA sequences that regulate gene expression via binding of messenger RNA. It is estimated that miRNAs co-regulate the expression of more than 70% of all human genes, many of which fulfil important roles in bone metabolism and muscle function. In-vitro and in-vivo experiments have shown that the targeted loss of miRNAs in distinct bone cell types (osteoblasts and osteoclasts) results in altered bone mass and bone architecture. These results emphasize the biological relevance of miRNAs for bone health.

MiRNAs are not only considered as novel bone biomarkers because of their biological importance to bone metabolism, but also on the basis of other favorable properties: 1) Secretion of miRNAs from cells enables “minimally invasive” detection in biological fluids such as serum. 2) High stability of miRNAs in serum enables the retrospective analysis of frozen blood specimens. 3) Quantification of miRNAs in the serum is based on the RT-PCR - a robust method that is considered as the gold standard for the analysis of nucleic acids in clinical diagnostics.

With regard to osteoporosis, it has been shown that many of the known risk factors are characterized by distinct miRNA profiles in the affected tissues: i) age-related loss of bone mass, ii) sarcopenia, iii) changes in estrogen metabolism and related changes Loss of bone mass, and iv) diabetes. Therefore, numerous studies in recent years have dealt with the characterization of miRNAs in the serum of osteoporosis patients and healthy controls, and were able to identify recurring miRNA patterns that are characteristic of osteoporosis. These novel biomarkers have great potential for the diagnosis and prognosis of osteoporosis and its clinical outcomes.

The aim of this article is to give a summary of the current state of knowledge on the research and application of miRNA biomarkers in osteoporosis.

Zusammenfassung

MikroRNAs (miRNAs) sind kurze (18–24 Nukleotide) RNA Moleküle, welche über die Bindung an Botenstoff-RNA (messengerRNA) die Genexpression regulieren. Derzeit sind circa 2500 humane miRNAs annotiert. Circa 70% aller humanen Gene werden durch diese miRNAs co-reguliert, darunter viele Gene mit wesentlichen Funktionen für den Knochenstoffwechsel und die Muskelfunktion. Experimente in der Petrischale und im Tiermodell konnten zeigen, dass der zielgerichtete Verlust von miRNAs in Zelltypen des Knochens (Osteoblasten und Osteoklasten) zu starken Veränderungen der Knochenstruktur führen, woraus sich eine große Relevanz von miRNAs für die Knochengesundheit ableiten lässt.

Als Knochenbiomarker zeichnen sich miRNAs aber nicht nur wegen ihrer biologischen Funktionen im Knochenstoffwechsel aus, sondern auch auf Basis weiterer günstiger Eigenschaften: 1) Die Sekretion von miRNAs aus Zellen ermöglicht eine „minimal-invasive“ Detektion in Bioflüssigkeiten wie zum Beispiel Serum. 2) Die hohe Stabilität von miRNAs im Serum vereinfacht retrospektive Analysen von gefrorenen Blutproben. 3) Die Quantifizierung von miRNAs im Serum erfolgt auf Basis der RT-PCR – eine robuste Methode die als Goldstandard für die Analytik von Nukleinsäuren in der klinischen Diagnostik gilt.

In Bezug auf die Osteoporose konnte gezeigt werden, dass viele der bekannten Risikofaktoren zu Veränderungen von miRNA Profilen in den betroffenen Geweben führen: i) Altersbedingter Verlust an Knochenmasse, ii) Sarkopenie, iii) Veränderungen im Östrogenstoffwechsel und daraus bedingter Verlust an Knochenmasse, und iv) Diabetes. In weiterer Folge haben sich in den vergangenen Jahren zahlreiche Studien mit der Charakterisierung von miRNAs im Serum von Osteoporosepatient*innen und gesunden Kontrollen auseinandergesetzt, und konnten miRNA Muster identifizieren, welche mit niedriger Knochendichte und erhöhtem Frakturrisiko assoziiert sind. Diese neuartigen Biomarker haben großes Potenzial für die Diagnose und Prognose der Osteoporose, insbesondere der klinischen Konsequenz in Form von Fragilitätsfrakturen.

Dieser Artikel fasst den derzeitigen Wissenstand in Bezug auf die Erforschung und Anwendung von miRNAs als Biomarker für Osteoporose zusammen.



Publication History

Received: 11 May 2021

Accepted: 26 May 2021

Article published online:
17 September 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Ruvkun G. Molecular biology: Glimpses of a tiny RNA world. Science 2001; 294: 797-799
  • 2 Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004; 116: 281-297
  • 3 Hobert O. Gene Regulation by Transcription Factors and MicroRNAs. Science. 2008 Mar 28; 319 (5871): 1785–1786
  • 4 He L, Hannon GJ. MicroRNAs: Small RNAs with a big role in gene regulation. Nat Rev Genet 2004; 5: 522-531
  • 5 Raggatt LJ, Partridge NC. Cellular and Molecular Mechanisms of Bone Remodeling. J Biol Chem 2010; 285: 25103-25108
  • 6 Grillari J, Mäkitie RE, Kocijan R. et al Circulating miRNAs in bone health and disease. Bone 2021; 145: 115787
  • 7 Gaur T, Hussain S, Mudhasani R. et al Dicer inactivation in osteoprogenitor cells compromises fetal survival and bone formation, while excision in differentiated osteoblasts increases bone mass in the adult mouse. Dev Biol 2010; 340: 10-21
  • 8 Sugatani T, Hruska KA. Impaired Micro-RNA Pathways Diminish Osteoclast Differentiation and Function. J Biol Chem 2009; 284: 4667-4678
  • 9 Mizoguchi F, Izu Y, Hayata T. et al Osteoclast-specific Dicer gene deficiency suppresses osteoclastic bone resorption. J Cell Biochem 2010; 109: 866–875.
  • 10 Devhare PB, Ray RB. Extracellular vesicles: Novel mediator for cell to cell communications in liver pathogenesis. Mol Aspects Med 2018; 60: 115-122
  • 11 Qiu G, Zheng G, Ge M. et al Mesenchymal stem cell-derived extracellular vesicles affect disease outcomes via transfer of microRNAs. Stem Cell Res Ther 2018; 9: 320
  • 12 Yin P, Lv H, Li Y, Deng Y, Zhang L, Tang P. Exosome-Mediated Genetic Information Transfer, a Missing Piece of Osteoblast–Osteoclast Communication Puzzle. Front. Endocrinol. [Internet] 2017; 8. Available from: http://journal.frontiersin.org/article/10.3389/fendo.2017.00336/full
  • 13 Li C-J, Cheng P, Liang M-K. et al MicroRNA-188 regulates age-related switch between osteoblast and adipocyte differentiation. J Clin Invest 2015; 125: 1509-1522
  • 14 Patil KC, Soekmadji C. Extracellular Vesicle-Mediated Bone Remodeling and Bone Metastasis: Implications in Prostate Cancer. Subcellular Biochemistry 2021; 97: 297–361
  • 15 Strimbu K, Tavel JA. What are biomarkers? Curr Opin. HIV AIDS 2010; 5: 463-466
  • 16 Reichholf B, Herzog VA, Fasching N, Manzenreither RA, Sowemimo I, Ameres SL. Time-Resolved Small RNA Sequencing Unravels the Molecular Principles of MicroRNA Homeostasis. Mol Cell 2019; 75: 756-768.e7
  • 17 Nunomura A, Perry G. . RNA and Oxidative Stress in Alzheimer’s Disease: Focus on microRNAs. Oxid Med Cell Longev 2020; 1–16. Nov 30; 2020: 2638130.
  • 18 Seok H, Lee H, Lee S. Position-specific oxidation of miR-1 encodes cardiac hypertrophy. Nature 2020; 584: 279-285
  • 19 Starlinger P, Hackl H, Pereyra D. et al Predicting Postoperative Liver Dysfunction Based on Blood Derived MicroRNA Signatures. Hepatology 2019; 69: 2636–2651. Available from: http://doi.wiley.com/10.1002/hep.30572.
  • 20 Hackl M, Heilmeier U, Weilner S, Grillari J. Circulating microRNAs as novel biomarkers for bone diseases – Complex signatures for multifactorial diseases? Mol Cell Endocrinol 2016 432. 83-95
  • 21 Mäkitie RE, Hackl M, Niinimäki R, Kakko S, Grillari J, Mäkitie O. Altered MicroRNA Profile in Osteoporosis Caused by Impaired WNT Signaling. J Clin Endocrinol Metab 2018; 103: 1985-1996
  • 22 Mäkitie RE, Hackl M, Weigl M. et al Unique, Gender-Dependent Serum microRNA Profile in PLS3 Gene-Related Osteoporosis. J Bone Miner Res 2020; 35: 1962–1973. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/jbmr.4097
  • 23 Köberle V, Pleli T, Schmithals C. et al Differential Stability of Cell-Free Circulating microRNAs: Implications for Their Utilization as Biomarkers. PLoS ONE 2013; 8: e75184
  • 24 Fauth M, Hegewald AB, Schmitz L, Krone DJ, Saul MJ. Validation of extracellular miRNA quantification in blood samples using RT-qPCR. FASEB BioAdvances 2019; 1: 481-492
  • 25 Schulte C, Barwari T, Joshi A. et al Comparative Analysis of Circulating Noncoding RNAs Versus Protein Biomarkers in the Detection of Myocardial Injury. Circ Res 2019; 125: 328-340
  • 26 Kerschan-Schindl K, Hackl M, Boschitsch E, Föger-Samwald U. Diagnostic Performance of a Panel of miRNAs (OsteomiR) for Osteoporosis in a Cohort of Postmenopausal Women. Calcif Tissue Int 2021; 108: 725–737
  • 27 Mussbacher M. Impact of anticoagulation and sample processing on the quantification of human blood-derived microRNA signatures. Cells 2020; 9: 1915
  • 28 Mussbacher M, Schrottmaier WC, Salzmann M. et al Optimized plasma preparation is essential to monitor platelet-stored molecules in humans. PLOS ONE 2017; 12: e0188921
  • 29 Kirschner MB, Kao SC, Edelman JJ. et al Haemolysis during sample preparation alters microRNA content of plasma. PLoS ONE 2011; 6.
  • 30 Blondal T, Jensby Nielsen S, Baker A. et al Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods 2013 59. S1-6
  • 31 Walter E, Dellago H, Grillari J, Dimai HP, Hackl M. Cost-utility analysis of fracture risk assessment using microRNAs compared with standard tools and no monitoring in the Austrian female population. Bone 2018; 108: 44-54
  • 32 Farr JN, Fraser DG, Wang H. et al Identification of Senescent Cells in the Bone Microenvironment: SENESCENCE IN THE BONE MICROENVIRONMENT. J Bone Miner Res 2016; 31: 1920-1929
  • 33 Qadir A, Liang S, Wu Z, Chen Z, Hu L, Qian A. Senile Osteoporosis: The Involvement of Differentiation and Senescence of Bone Marrow Stromal Cells. Int J Mol Sci 2020; 21: 349
  • 34 Hackl M, Brunner S, Fortschegger K. et al miR-17, miR-19b, miR-20a, and miR-106a are down-regulated in human aging. Aging Cell 2010; 9: 291-296
  • 35 Aquino-Martinez R, Farr JN, Weivoda MM. et al miR-219a-5p Regulates Rorβ During Osteoblast Differentiation and in Age-related Bone Loss. J Bone Miner Res 2019; 34: 135-144
  • 36 Saferding V, Hofmann M, Brunner JS. et al. microRNA-146a controls age-related bone loss. Aging Cell [Internet]. 2020; 19. Available from: https://onlinelibrary.wiley.com/doi/10.1111/acel.13244
  • 37 Zhao J, Huang M, Zhang X. et al MiR-146a Deletion Protects From Bone Loss in OVX Mice by Suppressing RANKL/OPG and M-CSF in Bone Microenvironment. J Bone Miner Res 2019; 34: 2149-2161
  • 38 Kocijan R, Muschitz C, Geiger E. et al Circulating microRNA signatures in patients with idiopathic and postmenopausal osteoporosis and fragility fractures. J Clin Endocrinol Metab 2016; 101: 4125–4134
  • 39 Costa V, Carina V, Conigliaro A. et al miR-31-5p Is a LIPUS-Mechanosensitive MicroRNA that Targets HIF-1α Signaling and Cytoskeletal Proteins. Int J Mol Sci 2019; 20: 1569
  • 40 Xu X, Jiang H, Li X. et al Bioinformatics analysis on the differentiation of bone mesenchymal stem cells into osteoblasts and adipocytes. Mol Med Rep 2017; 15: 1571-1576
  • 41 Weilner S, Schraml E, Wieser M. et al Secreted microvesicular miR-31 inhibits osteogenic differentiation of mesenchymal stem cells. Aging Cell 2016; 15: 744–754
  • 42 Weitzmann MN. Estrogen deficiency and bone loss: an inflammatory tale. J Clin Invest 2006; 116: 1186-1194
  • 43 Xu Y, Li D, Zhu Z. et al miR‑27a‑3p negatively regulates osteogenic differentiation of MC3T3–E1 preosteoblasts by targeting osterix. Mol Med Rep 2020; 22: 1717-1726
  • 44 Kocijan R, Weigl M, Skalicky S. et al MicroRNA levels in bone and blood change during bisphosphonate and teriparatide therapy in an animal model of postmenopausal osteoporosis. Bone 2020; 131: 115104
  • 45 Siracusa J, Koulmann N, Banzet S. Circulating myomiRs: a new class of biomarkers to monitor skeletal muscle in physiology and medicine: Circulating myomiRs. J Cachexia Sarcopenia Muscle 2018; 9: 20-27
  • 46 Coenen-Stass A, Wood M, Roberts T. Biomarker Potential of Extracellular miRNAs in Duchenne Muscular Dystrophy. Trends Mol Med 2017; 23: 989–1001
  • 47 Ade CJ, Bemben DA. Differential MicroRNA expression following head-down tilt bed rest: implications for cardiovascular responses to microgravity. Physiol Rep 2019; 7: e14061
  • 48 Weilner S, Skalicky S, Salzer B. et al Differentially circulating miRNAs after recent osteoporotic fractures can influence osteogenic differentiation. Bone 2015; 79: 43-51
  • 49 Anastasilakis AD, Makras P, Pikilidou M. et al Changes of Circulating MicroRNAs in Response to Treatment With Teriparatide or Denosumab in Postmenopausal Osteoporosis. J Clin Endocrinol Metab 2018; 103: 1206-1213
  • 50 Heilmeier U, Hackl M, Skalicky S. et al Serum miRNA Signatures Are Indicative of Skeletal Fractures in Postmenopausal Women With and Without Type 2 Diabetes and Influence Osteogenic and Adipogenic Differentiation of Adipose Tissue–Derived Mesenchymal Stem Cells In Vitro J Bone Miner Res 2016; 31: 2173–2192
  • 51 Ladang A, Beaudart C, Locquet M, Reginster J, Bruyère O, Cavalier E. Evaluation of a Panel of MicroRNAs that Predicts Fragility Fracture Risk: A Pilot Study. Calcif Tissue Int 2020; 106: 239–247
  • 52 Zarecki P, Hackl M, Grillari J, Debono M, Eastell R. Serum microRNAs as novel biomarkers for osteoporotic vertebral fractures. Bone 2020; 130: 115105
  • 53 Infante A, Gener B, Vázquez M. et al Reiterative infusions of MSCs improve pediatric osteogenesis imperfecta eliciting a pro-osteogenic paracrine response: TERCELOI clinical trial. Clin Transl Med [Internet] 2021; 11. Available from: https://onlinelibrary.wiley.com/doi/10.1002/ctm2.265