Subscribe to RSS
Please copy the URL and add it into your RSS Feed Reader.
https://www.thieme-connect.de/rss/thieme/en/10.1055-s-00000084.xml
Synthesis 2021; 53(18): 3351-3354
DOI: 10.1055/a-1518-9010
DOI: 10.1055/a-1518-9010
special topic
Bond Activation – in Honor of Prof. Shinji Murai
Catalytic Reductive Cleavage of Poly(phenylene sulfide) Using a Hydrosilane
This work was supported financially by the DIC Corporation and the National Institute of Advanced Industrial Science and Technology (AIST). Y.M. also acknowledges a Grant-in-Aid Scientific Research (C) (19K05481 to Y.M.) from the JSPS and the Fujimori foundation.
Abstract
The solvent-insoluble poly(phenylene sulfide) main chain was reductively cleaved by using triethylsilane as a hydrogen source under palladium/IcHex catalytic conditions. After the reaction, benzene and bis(triethylsilyl) sulfide as a sulfide source were formed efficiently. This method could be operated on a gram scale.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1518-9010.
- Supporting Information
Publication History
Received: 30 April 2021
Accepted after revision: 27 May 2021
Accepted Manuscript online:
27 May 2021
Article published online:
06 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Rahimi A, Carcia JM. Nat. Rev. Chem. 2017; 1: 0046
- 1b Lu X.-B, Liu Y, Zhou H. Chem. Eur. J. 2018; 24: 11255
- 1c Coates GW, Getzler YD. Y. L. Nat. Rev. Mater. 2020; 5: 501
- 2a Kumar A, von Wolff N, Rauch M, Zou Y.-Q, Shmul G, Ben-David Y, Leitus G, Avram L, Milstein D. J. Am. Chem. Soc. 2020; 142: 14267
- 2b Zhou W, Neumann P, Al Batal M, Rominger F, Hashmi AS. K, Schaub T. ChemSusChem 2021; in press; DOI: 10.1002/cssc.202002465
- 3a Yu ZL, Miao GX, Chen YR. Macromol. Chem. Phys. 1996; 197: 4061
- 3b Wang SJ, Bian SG, Yan H, Xiao M, Meng YZ. J. Appl. Polym. Sci. 2008; 110: 4049
- 3c Lian Z, Bhawal BN, Morandi B. Science 2017; 356: 1059
- 4 Nozingo R, Wolf DE, Harris SA, Folkers K. J. Am. Chem. Soc. 1943; 65: 1013
- 5 Van Buren RL, Baltisberger R, Woolsey NF, Stenberg VI. J. Org. Chem. 1982; 47: 4107
- 6 Ho KM, Lam CH, Luh T.-Y. J. Org. Chem. 1989; 54: 4474
- 7 Eckert-Maksić M, Margetić D. Energy Fuels 1991; 5: 327
- 8a Barbero N, Martin R. Org. Lett. 2012; 14: 796
- 8b Fang S, Wang M, Liu J, Li B, Liu J. RSC Adv. 2017; 7: 51475
- 9 Graham TH, Liu W, Shen D.-M. Org. Lett. 2011; 13: 6232
- 10 Chung M.-K, Schlaf M. J. Am. Chem. Soc. 2004; 126: 7386
- 11a Matsumura T, Niwa T, Nakada M. Tetrahedron Lett. 2012; 53: 4313
- 11b Matsumura T, Nakada M. Tetrahedron Lett. 2014; 55: 1412
- 12 Toutov AA, Salata M, Fedorov A, Yang Y.-F, Liang Y, Cariou R, Betz KN, Couzijn EP. A, Shabaker JW, Houk KN, Grubbs RH. Nat. Energy 2017; 2: 17008
- 13a Ando W, Furuhata T, Tsumaki H, Sekiguchi A. Synth. Commun. 1982; 12: 627
- 13b Ando W, Furuhata T, Tsumaki H, Sekiguchi A. Chem. Lett. 1982; 885
- 13c Steliou K, Mrani M. J. Am. Chem. Soc. 1982; 104: 3104
- 13d Lozzi L, Ricci A, Taddei M. J. Org. Chem. 1984; 49: 3408
- 13e Capozzi F, Capozzi G, Menichetti S. Tetrahedron Lett. 1988; 29: 4177
- 13f DeGroot MW, Corrigan JF. Organometallics 2005; 24: 3378
- 13g Vela J, Smith JM, Yu Y, Ketterer NA, Flaschenriem CJ, Lachicotte RJ, Holland PL. J. Am. Chem. Soc. 2005; 127: 7857
- 13h Yamaguchi H, Ikeda M, Matsuda K, Irie M. Bull. Chem. Soc. Jpn. 2006; 79: 1414
- 13i Zhu J, Kell AJ, Workentin MS. Org. Lett. 2006; 8: 4993
- 13j Borecki A, Corrigan JF. Inorg. Chem. 2007; 46: 2478
- 13k Xi B, Holm RH. Inorg. Chem. 2011; 50: 6280
- 13l Fard MA, Levchenko TI, Cadogan C, Humenny WJ, Corrigan JF. Chem. Eur. J. 2016; 22: 4543
- 13m Ogiwara Y, Maeda H, Sakai N. Synlett 2018; 29: 655
-
14 According to Sigma-Aldrich, Inc, prices of triethylsilane, trimethoxysilane, triethoxysilane, and bis(trimethylsiloxy)methylsilane are 111 USD/mol (ordering scale, 500 g, 99%), 551 USD/mol (ordering scale, 100 g, 95%), 491 USD/mol (ordering scale, 50 mL, 95%), and 156 USD/mol (ordering scale, 250 mL, 97%).
-
15 See the Supporting Information.
- 16 Sugahara T, Murakami K, Yorimitsu H, Osuka A. Angew. Chem. Int. Ed. 2014; 53: 9329
-
17 This gram-scale reductive bond cleavage was performed under xylene reflux conditions (oil bath temperature was 160 °C) in an open flask. Disilyl sulfide 4 was generated in 75% NMR yield, showing that this reaction is also operative without using a closed vessel.
-
18 In the reaction of PPS with 1 equivalent of 2 catalyzed by Singacycle-A1, 6 was observed in 42% yield with benzene (72%) and 4 (9%). These yields were determined based on the amount of 5.
- 19 Fahey DR, Hensley HD, Ash CE, Senn DR. Macromolecules 1997; 30: 387
-
20 In addition, we attempted the reaction of di(4-bromophenyl) sulfide with triethylsilane under the present catalytic conditions to compare the reactivity between C–S and C–Br bonds. As a result, the C–Br bond was cleaved mainly. See the Supporting Information.
For, disilyl sulfides as a sulfur source, see: