Osteologie 2021; 30(03): 230-242
DOI: 10.1055/a-1527-4395
Review

Epigenetics of Osteoporosis

Epigenetik der Osteoporose
Oliver Bischof
1   CNRS Délégation Ile de France Villejuif, 7 rue Guy Moquet, 94800 Villejuif, France
,
Regina Ebert
2   Bernhard-Heine-Centrum für Bewegungsforschung, Lehrstuhl für Orthopädie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
,
Hanna Taipaleenmäki
3   Molecular Skeletal Biology Laboratory, Department of Trauma and Orthopedic Surgery, University Medical Center Hamburg-Eppendorf, Hamburg; Germany
,
Eric Hesse
4   Institut für Molekulare Muskuloskelettale Forschung, Klinikum der Universität München, Planegg; Germany
,
Franz Jakob
2   Bernhard-Heine-Centrum für Bewegungsforschung, Lehrstuhl für Orthopädie, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
› Institutsangaben

Abstract

Fragile bone is the root cause of osteoporosis. For inherited or acquired reasons, the fragile bone does not provide sufficient fracture resistance to withstand the physical strains of a normal lifestyle. Accordingly, clinical characteristics consist of fragility fractures that occur during daily life activities or low energy trauma. Hip fractures and vertebral fractures are so called "major osteoporotic fractures”, that also cause the highest burden of disease. Although the clinical osteoporosis manifestations are relatively uniform, there is a vast spectrum of underlying molecular causes. Impaired bone formation, accelerated bone loss, and impaired lifetime adaptive regeneration according to physical impact characterize the cruder facets of osteoporosis. The signaling cascades that govern bone formation and metabolism may be altered by genetically or epigenetically inherited defects or acquired epigenetic changes due to tissue aging and/or underlying diseases. While molecular genetics and mechanisms and specific osteoporosis treatments have made impressive progress over the last three decades, there is still an urgent need to better understand the role of epigenetics in this disease.

Epigenetic mechanisms such as covalent modifications of DNA, histones, or essential core factors like the osteogenic transcription factors (e. g., RUNX2) and inhibitory modulators of osteogenic WNT-signaling (e. g., Dickkopf-1 (DKK-1), sclerostin (SOST)) are all intricately implicated in developmental bone formation and adaptive regeneration and remodeling processes throughout adult life. These mechanisms are accompanied by chromatin architecture and gene expression changes of small (e. g., microRNAs (miRs)) and long, noncoding RNAs (lncRNAs). The timely execution of these mechanisms either facilitates or inhibits bone formation and remodeling. Together, epigenetic mechanisms controlling bone homeostasis widen the spectrum of potential dysregulations that can cause osteoporosis and open new avenues for therapeutic interventions.

Apart from the core mechanisms of bone formation and regeneration, recent research revealed that tissue-resident cells of the immune system such as tissue-specific macrophages, myeloid precursors, and lymphocytes have surprisingly fundamental influence on tissue regeneration, including bone. Those tissue resident cells are also subject to epigenetic changes and may substantially contribute to the development of disease. Epigenetic constellations can be inherited, but the dynamic epigenetic mechanisms involved in physiological processes of tissue regeneration may also be affected by pathologies such as cellular aging and senescence. Recently, several studies aimed at identifying DNA methylation signatures in peripheral blood leukocytes from osteoporosis patients that reveal novel disease mechanisms and potential targets for diagnosis and treatment. Overall, these studies rendered, however, yet inconclusive results.

By contrast, studies using bone marrow-derived skeletal progenitors identified transcriptome changes in osteoporosis patients, which could have epigenetic reasons in the absence of genetic causes. Respective changes may be related to the local milieu in bone and bone marrow as a kind of segmental attitude of a specific tissue acquired through tissue aging and/or supported by underlying aging-associated diseases such as arteriosclerosis or aging of cells of the immune system.

In summary, there is cumulating evidence linking epigenetic factors to the pathogenesis of aging-associated osteoporosis. However, we are currently still limited in our knowledge with respect to the causal traits that are common, inherited, or acquired in a lifetime in the respective tissues and cells involved in bone formation and regeneration. During the following years, the field will most certainly learn more about molecular processes and factors that can be targeted therapeutically and/or used as biomarkers for risk assessment.

Zusammenfassung

Man spricht von Osteoporose, wenn der Knochen von der Entwicklung her so fragil angelegt ist oder im Lauf des Lebens sich dahingehend verändert hat, dass er nicht die ausreichende Bruchfestigkeit aufweist, um den physikalischen Belastungen eines durchschnittlichen Lebens standzuhalten. Knochenbrüche bei inadäquater Belastung oder Niedrig-Energie-Trauma, Fragilitätsfrakturen, sind demgemäß die klinischen Charakteristika. Die häufigsten Frakturen, gleichzeitig diejenigen mit den schwerwiegendsten klinischen Auswirkungen, sind hüftnahe Frakturen des Femur und vertebrale Frakturen. Auch wenn die klinischen Manifestationen der Osteoporose relativ uniform erscheinen, gibt es eine sehr breite Palette möglicher molekularer Ursachen. Beeinträchtigter Knochenaufbau, beschleunigter Knochenabbau und Beeinträchtigung der lebenslangen Adaptation und Regeneration stellen die groben Facetten der Erkrankung dar. Osteogene Signalkaskaden können genetisch, epigenetisch oder durch andere Krankheiten Regulationsstörungen aufweisen, die den Knochenmetabolismus sekundär verändern. Zwar hat sich die Forschung über die molekularen Mechanismen und die Entwicklung zielgenauer Medikamente in den letzten Dekaden sehr rasch entwickelt, am wenigsten aber ist derzeit über die spezifischen epigenetischen Ursachen bekannt. Epigenetische Mechanismen wie Methylierung von DNA und Histonen, Acetylierung von Histonen und Expression verschiedener nichtkodierender RNA-Moleküle (ncRNA) sind sehr eng verknüpft mit der Knochenformation während der Entwicklung und der Regeneration, aber auch mit dem adaptiven Remodeling im Erwachsenenalter. Essentielle Regulatoren der Knochenformation wie der osteogene Transkriptionsfaktor RUNX2 und die Inhibitoren osteogener wnt-Signalkaskaden Dickkopf-1 (DKK1) und Sklerostin (SOST) werden wie auch viele nachgeordnete osteogene Proteine physiologischerweise im Rahmen der Differenzierungsprogramme skelettaler Vorläuferzellen durch Methylierung von DNA und andere epigenetische Mechanismen moduliert. Hand in Hand damit finden Veränderungen der Chromatin-Architektur statt, die z. B. durch polycomb-Proteinkomplexe wie PRC2 und durch (De-) Methylierung und (De-)Acetylierung von Histonen sowie durch Expression bestimmter nicht-kodierender RNAs gemeinsam orchestriert werden, und Knochen-Formation oder -Abbau begünstigen oder verhindern. Von daher wissen wir, dass physiologischerweise Knochenentwicklung und Remodellierung im Erwachsenenalter mit epigenetischen Regulationsmechanismen gesteuert werden kann. Dies öffnet folgerichtig auch alle Türen für die Entwicklung von Fehlregulationen und Pathologien, die Krankheiten begünstigen, auch die Entstehung der Osteoporose. Über die zentral an der Knochenformation beteiligten Zelltypen hinaus hat jüngste Forschung Erkenntnisse darüber erbracht, wie überraschend essenziell der Einfluss gewebe-spezifischer residenter Zellen des Immunsystems auf die Geweberegeneration ist, beispielsweise gewebespezifischer Makrophagen und myeloischer Vorläufer oder Lymphozyten. Solche innovativen Aspekte der Geweberegeneration im Allgemeinen eröffnen ein neues Level der Komplexität, besonders was die epigenetischen Mechanismen der intrinsischen Gewebe-Regeneration anbelangt. Im Besonderen eröffnen sie neue Fragen über mögliche epigenetische Ursachen defizienter Regeneration oder eintretender Degeneration in Geweben nicht nur in den gewebeeigenen Zellen, in diesem Fall Osteoblasten / Osteozyten und Osteoklasten, sondern auch in spezifischen Kompartimenten wie beispielsweise den gewebe-residenten Zellen des Immunsystems. Prinzipiell sind epigenetische Konstellationen erblich, es gibt aber auch die erwähnten, sich dynamisch verändernden Aktivitäten epigenetischer Regulations-Mechanismen, die ihrerseits wiederum im Rahmen von Pathologie-Entwicklung zur Krankheitsursache werden können. In den letzten Jahren wurden Untersuchungen durchgeführt, die in der DNA peripherer Leukozyten und in skelettalen Vorläuferzellen aus dem Knochenmark bei OsteoporosepatientInnen im Vergleich zu knochengesunden Personen nach epigenetischen Veränderungen gesucht haben, die ursächlich für die Osteoporose sein könnten. Ziele solcher Untersuchungen sind neben dem besseren Verständnis der Pathogenese der Erkrankung die Identifizierung neuer therapeutischer Zielmoleküle und / oder die Etablierung epigenetischer Marker als Risikoindikatoren. Einige Arbeiten konnten differentielle Methylierungsmuster in bestimmten Genregionen in der DNA zirkulierender Blutzellen finden, sowohl in solchen Genen die zentral mit dem Knochenstoffwechsel verknüpft sind als auch in solchen die man bisher nicht mit der Knochenbiologie in Verbindung brachte. Andere Arbeiten fanden in der DNA der mononukleären Blutzellen bei Berechnung mit hoher Stringenz keine signifikanten Veränderungen. Mehrere Arbeiten jedoch erbrachten Hinweise darauf, dass EZH2, ein Mitglied des polycomb Komplexes PRC2 mit Methyltransferase-Aktivität, signifikant bei Osteoporose überexprimiert wird und überaktiv ist. Solche Mechanismen dürfen als Kandidaten für epigenetische Ursachen der Osteoporose angesehen werden, die Ergebnisse sind aber derzeit noch nicht konsistent. Es gab bei OsteoporosepatientInnen keine Hinweise für eine Progerie-Konstellation, eine frühzeitige Alterung mit systemischen Auswirkungen. Untersuchungen an skelettalen Vorläuferzellen im Knochenmark, ergaben jedoch eindeutige Veränderungen des Transkriptoms skelettaler Vorläuferzellen bei OsteoporosepatientInnen, was bei Fehlen relevanter genetischer Veränderungen am ehesten im Sinne epigenetischer Ursachen zu interpretieren ist. Diese sind möglicherweise beschränkt auf das Milieu im Knochen und Knochenmark und daher peripher nicht eindeutig zu identifizieren. Am ehesten sind diese Veränderungen epigenetischer Regulation als segmentale Störung im Lauf des Lebens akquiriert, die durch Gewebealterung und begünstigende Krankheiten anderer Gewebe ein Regenerationsdefizit bedingen. Zusammengefasst ergeben sich eindeutige Hinweise dafür, dass die altersassoziierte Osteoporose epigenetische Ursachen hat. Wir wissen aber noch nicht, welche charakteristischen epigenetisch veränderten übergeordneten Schaltstellen es gibt, die über Generationen vererbt werden und / oder im Lauf des Lebens im Gewebe erworben werden. In den nächsten Jahren ist mit Sicherheit zu erwarten, dass neue Zielmechanismen für die Therapie entdeckt werden und Risikokonstellationen mit epigenetischen Markern beschrieben werden können.



Publikationsverlauf

Eingereicht: 08. Juni 2021

Angenommen: 11. Juni 2021

Artikel online veröffentlicht:
17. September 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Compston JE, McClung MR, Leslie WD. Osteoporosis. Lancet 2019; 393: 364-376 doi: 10.1016/S0140-6736(18)32112-3
  • 2 Al-Barghouthi BM, Farber CR. Dissecting the Genetics of Osteoporosis using Systems Approaches. Trends Genet 2019; 35: 55-67 doi: 10.1016/j.tig.2018.10.004
  • 3 Karasik D, Rivadeneira F, Johnson ML. The genetics of bone mass and susceptibility to bone diseases. Nat Rev Rheumatol 2016; 12: 323-334 doi: 10.1038/nrrheum.2016.48
  • 4 Makitie RE, Costantini A, Kampe A. et al New Insights Into Monogenic Causes of Osteoporosis. Front Endocrinol (Lausanne) 2019; 10: 70 doi: 10.3389/fendo.2019.00070
  • 5 Sturznickel J, Rolvien T, Delsmann A. et al Clinical Phenotype and Relevance of LRP5 and LRP6 Variants in Patients With Early-Onset Osteoporosis (EOOP). J Bone Miner Res 2021; 36: 271-282 doi: 10.1002/jbmr.4197
  • 6 Hadji P, Klein S, Haussler B. et al The bone evaluation study (BEST): patient care and persistence to treatment of osteoporosis in Germany. Int J Clin Pharmacol Ther 2013; 51: 868-872 doi: 10.5414/CP201931
  • 7 Hadji P, Klein S, Gothe H. et al The epidemiology of osteoporosis--Bone Evaluation Study (BEST): an analysis of routine health insurance data. Dtsch Arztebl Int 2013; 110: 52-57 doi: 10.3238/arztebl.2013.0052
  • 8 Tran T, Bliuc D, Pham HM. et al A Risk Assessment Tool for Predicting Fragility Fractures and Mortality in the Elderly. J Bone Miner Res 2020; 35: 1923-1934 doi: 10.1002/jbmr.4100
  • 9 Billington EO, Reid IR. Benefits of Bisphosphonate Therapy: Beyond the Skeleton. Curr Osteoporos Rep 2020; 18: 587-596 doi: 10.1007/s11914-020-00612-4
  • 10 Raines AM, Magella B, Adam M. et al Key pathways regulated by HoxA9,10,11/HoxD9,10,11 during limb development. BMC Dev Biol 2015; 15: 28 doi: 10.1186/s12861-015-0078-5
  • 11 Rux DR, Wellik DM. Hox genes in the adult skeleton: Novel functions beyond embryonic development. Dev Dyn 2017; 246: 310-317 doi: 10.1002/dvdy.24482
  • 12 Boulet AM, Capecchi MR. Multiple roles of Hoxa11 and Hoxd11 in the formation of the mammalian forelimb zeugopod. Development 2004; 131: 299-309 doi: 10.1242/dev.00936
  • 13 Kusumbe AP, Ramasamy SK, Adams RH. Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature 2014; 507: 323-328 doi: 10.1038/nature13145
  • 14 Sivaraj KK, Adams RH. Blood vessel formation and function in bone. Development 2016; 143: 2706-2715 doi: 10.1242/dev.136861
  • 15 Varol C, Mildner A, Jung S. Macrophages: development and tissue specialization. Annu Rev Immunol 2015; 33: 643-675 doi: 10.1146/annurev-immunol-032414-112220
  • 16 Ginhoux F, Guilliams M. Tissue-Resident Macrophage Ontogeny and Homeostasis. Immunity 2016; 44: 439-449 doi: 10.1016/j.immuni.2016.02.024
  • 17 Wells JM, Watt FM. Diverse mechanisms for endogenous regeneration and repair in mammalian organs. Nature 2018; 557: 322-328 doi: 10.1038/s41586-018-0073-7
  • 18 Rhinn M, Ritschka B, Keyes WM. Cellular senescence in development, regeneration and disease. Development 2019; 146 doi: 10.1242/dev.151837
  • 19 West MD, Sternberg H, Labat I. et al Toward a unified theory of aging and regeneration. Regen Med 2019; 14: 867-886 doi: 10.2217/rme-2019-0062
  • 20 Komori T. Regulation of Proliferation, Differentiation and Functions of Osteoblasts by Runx2. Int J Mol Sci 2019; 20. doi:10.3390/ijms20071694
  • 21 Teufel S, Hartmann C. Wnt-signaling in skeletal development. Curr Top Dev Biol 2019; 133: 235-279 doi: 10.1016/bs.ctdb.2018.11.010
  • 22 Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med 2013; 19: 179-192 doi: 10.1038/nm.3074
  • 23 Robling AG, Bonewald LF. The Osteocyte: New Insights. Annu Rev Physiol 2020; 82: 485-506 doi: 10.1146/annurev-physiol-021119-034332
  • 24 Kodama J, Kaito T. Osteoclast Multinucleation: Review of Current Literature. Int J Mol Sci 2020; 21. doi:10.3390/ijms21165685
  • 25 Udagawa N, Koide M, Nakamura M. et al Osteoclast differentiation by RANKL and OPG signaling pathways. J Bone Miner Metab 2021; 39: 19-26 doi: 10.1007/s00774-020-01162-6
  • 26 Kim JM, Lin C, Stavre Z. et al Osteoblast-Osteoclast Communication and Bone Homeostasis. Cells 2020; 9. doi:10.3390/cells9092073
  • 27 Sims NA, Martin TJ. Osteoclasts Provide Coupling Signals to Osteoblast Lineage Cells Through Multiple Mechanisms. Annu Rev Physiol 2020; 82: 507-529 doi: 10.1146/annurev-physiol-021119-034425
  • 28 Delgado-Calle J, Sato AY, Bellido T. Role and mechanism of action of sclerostin in bone. Bone 2017; 96: 29-37 doi: 10.1016/j.bone.2016.10.007
  • 29 Maeda K, Kobayashi Y, Koide M. et al The Regulation of Bone Metabolism and Disorders by Wnt Signaling. Int J Mol Sci 2019; 20. doi:10.3390/ijms20225525
  • 30 Lowery JW, Rosen V. The BMP Pathway and Its Inhibitors in the Skeleton. Physiol Rev 2018; 98: 2431-2452 doi: 10.1152/physrev.00028.2017
  • 31 Nagy V, Penninger JM. The RANKL-RANK Story. Gerontology 2015; 61: 534-542 doi: 10.1159/000371845
  • 32 Gregson CL, Duncan EL. The Genetic Architecture of High Bone Mass. Front Endocrinol (Lausanne) 2020; 11: 595653 doi: 10.3389/fendo.2020.595653
  • 33 Benisch P, Schilling T, Klein-Hitpass L. et al The transcriptional profile of mesenchymal stem cell populations in primary osteoporosis is distinct and shows overexpression of osteogenic inhibitors. PLoS One 2012; 7: e45142 doi: 10.1371/journal.pone.0045142
  • 34 Samano C, Gonzalez-Barrios R, Castro-Azpiroz M. et al Genomics and epigenomics of axolotl regeneration. Int J Dev Biol 2021; doi:10.1387/ijdb.200276cs
  • 35 Daponte V, Tylzanowski P, Forlino A. Appendage Regeneration in Vertebrates: What Makes This Possible? Cells 2021; 10: 242.doi:10.3390/cells10020242
  • 36 Kaaij LJT, van der Weide RH, Ketting RF. et al Systemic Loss and Gain of Chromatin Architecture throughout Zebrafish Development. Cell Rep 2018; 24: e14 doi: 10.1016/j.celrep.2018.06.003
  • 37 Harris RE, Stinchfield MJ, Nystrom SL. et al Damage-responsive, maturity-silenced enhancers regulate multiple genes that direct regeneration in Drosophila. Elife 2020; 9: e58305. doi:10.7554/eLife.58305
  • 38 Xin TY, Yu TT, Yang RL. DNA methylation and demethylation link the properties of mesenchymal stem cells: Regeneration and immunomodulation. World J Stem Cells 2020; 12: 351-358 doi: 10.4252/wjsc.v12.i5.351
  • 39 Baertschi S, Baur N, Lueders-Lefevre V. et al Class I and IIa histone deacetylases have opposite effects on sclerostin gene regulation. J Biol Chem 2014; 289: 24995-25009 doi: 10.1074/jbc.M114.564997
  • 40 Hu N, Wang C, Liang X. et al Inhibition of histone deacetylases potentiates BMP9-induced osteogenic signaling in mouse mesenchymal stem cells. Cell Physiol Biochem 2013; 32: 486-498 doi: 10.1159/000354453
  • 41 Jeon EJ, Lee KY, Choi NS. et al Bone morphogenetic protein-2 stimulates Runx2 acetylation. J Biol Chem 2006; 281: 16502-16511 doi: 10.1074/jbc.M512494200
  • 42 Huynh NC, Everts V, Ampornaramveth RS. Histone deacetylases and their roles in mineralized tissue regeneration. Bone Rep 2017; 7: 33-40 doi: 10.1016/j.bonr.2017.08.001
  • 43 Pierce JL, Begun DL, Westendorf JJ. et al Defining osteoblast and adipocyte lineages in the bone marrow. Bone 2019; 118: 2-7 doi: 10.1016/j.bone.2018.05.019
  • 44 Xu F, Li W, Yang X. et al The Roles of Epigenetics Regulation in Bone Metabolism and Osteoporosis. Front Cell Dev Biol 2020; 8: 619301 doi: 10.3389/fcell.2020.619301
  • 45 Xu F, Liu J, Na L. et al Roles of Epigenetic Modifications in the Differentiation and Function of Pancreatic beta-Cells. Front Cell Dev Biol 2020; 8: 748 doi: 10.3389/fcell.2020.00748
  • 46 Husmann D, Gozani O. Histone lysine methyltransferases in biology and disease. Nat Struct Mol Biol 2019; 26: 880-889 doi: 10.1038/s41594-019-0298-7
  • 47 Cakouros D, Gronthos S. Epigenetic Regulators of Mesenchymal Stem/Stromal Cell Lineage Determination. Curr Osteoporos Rep 2020; 18: 597-605 doi: 10.1007/s11914-020-00616-0
  • 48 Yu JR, Lee CH, Oksuz O. et al PRC2 is high maintenance. Genes Dev 2019; 33: 903-935 doi: 10.1101/gad.325050.119
  • 49 Kouznetsova VL, Tchekanov A, Li X. et al Polycomb repressive 2 complex-Molecular mechanisms of function. Protein Sci 2019; 28: 1387-1399 doi: 10.1002/pro.3647
  • 50 Cao Y, Li L, Fan Z. The role and mechanisms of polycomb repressive complex 2 on the regulation of osteogenic and neurogenic differentiation of stem cells. Cell Prolif 2021; e13032 doi: 10.1111/cpr.13032
  • 51 Jing H, Liao L, An Y. et al Suppression of EZH2 Prevents the Shift of Osteoporotic MSC Fate to Adipocyte and Enhances Bone Formation During Osteoporosis. Mol Ther 2016; 24: 217-229 doi: 10.1038/mt.2015.152
  • 52 Qi Q, Wang Y, Wang X. et al Histone demethylase KDM4A regulates adipogenic and osteogenic differentiation via epigenetic regulation of C/EBPalpha and canonical Wnt signaling. Cell Mol Life Sci 2020; 77: 2407-2421 doi: 10.1007/s00018-019-03289-w
  • 53 Yang X, Wang G, Wang Y. et al Histone demethylase KDM7A reciprocally regulates adipogenic and osteogenic differentiation via regulation of C/EBPalpha and canonical Wnt signalling. J Cell Mol Med 2019; 23: 2149-2162 doi: 10.1111/jcmm.14126
  • 54 Arnaudo AM, Garcia BA. Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 2013; 6: 24 doi: 10.1186/1756-8935-6-24
  • 55 Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21: 381-395 doi: 10.1038/cr.2011.22
  • 56 Ntorla A, Burgoyne JR. The Regulation and Function of Histone Crotonylation. Front Cell Dev Biol 2021; 9: 624914 doi: 10.3389/fcell.2021.624914
  • 57 Assis RIF, Schmidt AG, Racca F. et al DNMT1 Inhibitor Restores RUNX2 Expression and Mineralization in Periodontal Ligament Cells. DNA Cell Biol 2021; 40: 662-674 doi: 10.1089/dna.2020.6239
  • 58 Liang Y, Liu X, Zhou R. et al Chaetocin Promotes Osteogenic Differentiation via Modulating Wnt/Beta-Catenin Signaling in Mesenchymal Stem Cells. Stem Cells Int 2021; 2021: 8888416 doi: 10.1155/2021/8888416
  • 59 Shimizu E, Selvamurugan N, Westendorf JJ. et al Parathyroid hormone regulates histone deacetylases in osteoblasts. Ann N Y Acad Sci 2007; 1116: 349-353 doi: 10.1196/annals.1402.037
  • 60 Carlberg C. Vitamin D Genomics: From In Vitro to In Vivo. Front Endocrinol (Lausanne) 2018; 9: 250 doi: 10.3389/fendo.2018.00250
  • 61 Nishikawa K, Iwamoto Y, Kobayashi Y. et al DNA methyltransferase 3a regulates osteoclast differentiation by coupling to an S-adenosylmethionine-producing metabolic pathway. Nat Med 2015; 21: 281-287 doi: 10.1038/nm.3774
  • 62 Faulkner B, Astleford K, Mansky KC. Regulation of Osteoclast Differentiation and Skeletal Maintenance by Histone Deacetylases. Molecules 2019; 24. doi:10.3390/molecules24071355
  • 63 Blixt NC, Faulkner BK, Astleford K. et al Class II and IV HDACs function as inhibitors of osteoclast differentiation. PLoS One 2017; 12: e0185441 doi: 10.1371/journal.pone.0185441
  • 64 Herrmann M, Engelke K, Ebert R. et al Interactions between Muscle and Bone-Where Physics Meets Biology. Biomolecules 2020; 10. doi:10.3390/biom10030432
  • 65 Phillip JM, Aifuwa I, Walston J. et al The Mechanobiology of Aging. Annu Rev Biomed Eng 2015; 17: 113-141 doi: 10.1146/annurev-bioeng-071114-040829
  • 66 Killaars AR, Walker CJ, Anseth KS. Nuclear mechanosensing controls MSC osteogenic potential through HDAC epigenetic remodeling. Proc Natl Acad Sci U S A 2020; 117: 21258-21266 doi: 10.1073/pnas.2006765117
  • 67 Yu L, Xia K, Cen X. et al DNA methylation of noncoding RNAs: new insights into osteogenesis and common bone diseases. Stem Cell Res Ther 2020; 11: 109 doi: 10.1186/s13287-020-01625-7
  • 68 Yin C, Tian Y, Yu Y. et al Long noncoding RNA AK039312 and AK079370 inhibits bone formation via miR-199b-5p. Pharmacol Res 2021; 163: 105230 doi: 10.1016/j.phrs.2020.105230
  • 69 Yin C, Tian Y, Yu Y. et al A novel long noncoding RNA AK016739 inhibits osteoblast differentiation and bone formation. J Cell Physiol 2019; 234: 11524-11536 doi: 10.1002/jcp.27815
  • 70 Song W, Xie J, Li J. et al The Emerging Roles of Long Noncoding RNAs in Bone Homeostasis and Their Potential Application in Bone-Related Diseases. DNA Cell Biol 2020; 39: 926-937 doi: 10.1089/dna.2020.5391
  • 71 Zhang RP, Shao JZ, Xiang LX. GADD45A protein plays an essential role in active DNA demethylation during terminal osteogenic differentiation of adipose-derived mesenchymal stem cells. J Biol Chem 2011; 286: 41083-41094 doi: 10.1074/jbc.M111.258715
  • 72 Wakitani S, Yokoi D, Hidaka Y. et al The differentially DNA-methylated region responsible for expression of runt-related transcription factor 2. J Vet Med Sci 2017; 79: 230-237 doi: 10.1292/jvms.16-0321
  • 73 Raje MM, Ashma R. Epigenetic regulation of BMP2 gene in osteoporosis: a DNA methylation study. Mol Biol Rep 2019; 46: 1667-1674 doi: 10.1007/s11033-019-04615-y
  • 74 Fu B, Wang H, Wang J. et al Epigenetic regulation of BMP2 by 1,25-dihydroxyvitamin D3 through DNA methylation and histone modification. PLoS One 2013; 8: e61423 doi: 10.1371/journal.pone.0061423
  • 75 Liedtke D, Hofmann C, Jakob F. et al Tissue-Nonspecific Alkaline Phosphatase-A Gatekeeper of Physiological Conditions in Health and a Modulator of Biological Environments in Disease. Biomolecules 2020; 10. doi:10.3390/biom10121648
  • 76 Delgado-Calle J, Sanudo C, Sanchez-Verde L. et al Epigenetic regulation of alkaline phosphatase in human cells of the osteoblastic lineage. Bone 2011; 49: 830-838 doi: 10.1016/j.bone.2011.06.006
  • 77 Villagra A, Gutierrez J, Paredes R. et al Reduced CpG methylation is associated with transcriptional activation of the bone-specific rat osteocalcin gene in osteoblasts. J Cell Biochem. 2002; 85: 112-122
  • 78 Wu F, Jiao J, Liu F. et al Hypermethylation of Frizzled1 is associated with Wnt/beta-catenin signaling inactivation in mesenchymal stem cells of patients with steroid-associated osteonecrosis. Exp Mol Med 2019; 51: 1-9 doi: 10.1038/s12276-019-0220-8
  • 79 Chiba N, Furukawa K, Takayama S. et al Decreased DNA methylation in the promoter region of the WNT5A and GDNF genes may promote the osteogenicity of mesenchymal stem cells from patients with ossified spinal ligaments. J Pharmacol Sci 2015; 127: 467-473 doi: 10.1016/j.jphs.2015.03.008
  • 80 Tarfiei G, Noruzinia M, Soleimani M. et al ROR2 Promoter Methylation Change in Osteoblastic Differentiation of Mesenchymal Stem Cells. Cell J 2011; 13: 11-15
  • 81 Ebert R, Benisch P, Krug M. et al Acute phase serum amyloid A induces proinflammatory cytokines and mineralization via toll-like receptor 4 in mesenchymal stem cells. Stem Cell Res 2015; 15: 231-239 doi: 10.1016/j.scr.2015.06.008
  • 82 Delgado-Calle J, Sanudo C, Fernandez AF. et al Role of DNA methylation in the regulation of the RANKL-OPG system in human bone. Epigenetics 2012; 7: 83-91 doi: 10.4161/epi.7.1.18753
  • 83 Ghayor C, Weber FE. Epigenetic Regulation of Bone Remodeling and Its Impacts in Osteoporosis. Int J Mol Sci 2016; 17. doi:10.3390/ijms17091446
  • 84 Reppe S, Noer A, Grimholt RM. et al Methylation of bone SOST, its mRNA, and serum sclerostin levels correlate strongly with fracture risk in postmenopausal women. J Bone Miner Res 2015; 30: 249-256 doi: 10.1002/jbmr.2342
  • 85 Cao Y, Wang B, Wang D. et al Expression of Sclerostin in Osteoporotic Fracture Patients Is Associated with DNA Methylation in the CpG Island of the SOST Gene. Int J Genomics 2019; 2019: 7076513 doi: 10.1155/2019/7076513
  • 86 Behera J, George AK, Voor MJ. et al Hydrogen sulfide epigenetically mitigates bone loss through OPG/RANKL regulation during hyperhomocysteinemia in mice. Bone 2018; 114: 90-108 doi: 10.1016/j.bone.2018.06.009
  • 87 Jintaridth P, Tungtrongchitr R, Preutthipan S. et al Hypomethylation of Alu elements in post-menopausal women with osteoporosis. PLoS One 2013; 8: e70386 doi: 10.1371/journal.pone.0070386
  • 88 Lee HW, Suh JH, Kim AY. et al Histone deacetylase 1-mediated histone modification regulates osteoblast differentiation. Mol Endocrinol 2006; 20: 2432-2443 doi: 10.1210/me.2006-0061
  • 89 Wang J, Wang CD, Zhang N. et al Mechanical stimulation orchestrates the osteogenic differentiation of human bone marrow stromal cells by regulating HDAC1. Cell Death Dis 2016; 7: e2221 doi: 10.1038/cddis.2016.112
  • 90 Kim KT, Lee YS, Han I. The Role of Epigenomics in Osteoporosis and Osteoporotic Vertebral Fracture. Int J Mol Sci 2020; 21. doi:10.3390/ijms21249455
  • 91 Rahman MM, Kukita A, Kukita T. et al Two histone deacetylase inhibitors, trichostatin A and sodium butyrate, suppress differentiation into osteoclasts but not into macrophages. Blood 2003; 101: 3451-3459 doi: 10.1182/blood-2002-08-2622
  • 92 Kang JS, Alliston T, Delston R. et al Repression of Runx2 function by TGF-beta through recruitment of class II histone deacetylases by Smad3. EMBO J 2005; 24: 2543-2555 doi: 10.1038/sj.emboj.7600729
  • 93 Obri A, Makinistoglu MP, Zhang H. et al HDAC4 integrates PTH and sympathetic signaling in osteoblasts. J Cell Biol 2014; 205: 771-780 doi: 10.1083/jcb.201403138
  • 94 Wein MN, Spatz J, Nishimori S. et al HDAC5 controls MEF2C-driven sclerostin expression in osteocytes. J Bone Miner Res 2015; 30: 400-411 doi: 10.1002/jbmr.2381
  • 95 Zilberman Y, Ballestrem C, Carramusa L. et al Regulation of microtubule dynamics by inhibition of the tubulin deacetylase HDAC6. J Cell Sci 2009; 122: 3531-3541 doi: 10.1242/jcs.046813
  • 96 Pham L, Kaiser B, Romsa A. et al HDAC3 and HDAC7 have opposite effects on osteoclast differentiation. J Biol Chem 2011; 286: 12056-12065 doi: 10.1074/jbc.M110.216853
  • 97 Jin Z, Wei W, Dechow PC. et al HDAC7 inhibits osteoclastogenesis by reversing RANKL-triggered beta-catenin switch. Mol Endocrinol 2013; 27: 325-335 doi: 10.1210/me.2012-1302
  • 98 Fu Y, Zhang P, Ge J. et al Histone deacetylase 8 suppresses osteogenic differentiation of bone marrow stromal cells by inhibiting histone H3K9 acetylation and RUNX2 activity. Int J Biochem Cell Biol 2014; 54: 68-77 doi: 10.1016/j.biocel.2014.07.003
  • 99 Jin Z, Wei W, Huynh H. et al HDAC9 Inhibits Osteoclastogenesis via Mutual Suppression of PPARgamma/RANKL Signaling. Mol Endocrinol 2015; 29: 730-738 doi: 10.1210/me.2014-1365
  • 100 Zhang L, Qi M, Chen J. et al Impaired autophagy triggered by HDAC9 in mesenchymal stem cells accelerates bone mass loss. Stem Cell Res Ther 2020; 11: 269 doi: 10.1186/s13287-020-01785-6
  • 101 Backesjo CM, Li Y, Lindgren U. et al Activation of Sirt1 decreases adipocyte formation during osteoblast differentiation of mesenchymal stem cells. Cells Tissues Organs 2009; 189: 93-97 doi: 10.1159/000151744
  • 102 Kim HN, Han L, Iyer S. et al Sirtuin1 Suppresses Osteoclastogenesis by Deacetylating FoxOs. Mol Endocrinol 2015; 29: 1498-1509 doi: 10.1210/me.2015-1133
  • 103 Edwards JR, Perrien DS, Fleming N. et al Silent information regulator (Sir)T1 inhibits NF-kappaB signaling to maintain normal skeletal remodeling. J Bone Miner Res 2013; 28: 960-969 doi: 10.1002/jbmr.1824
  • 104 Jing Y, Zhou Y, Zhou F. et al SIRT2 deficiency prevents age-related bone loss in rats by inhibiting osteoclastogenesis. Cell Mol Biol (Noisy-le-grand) 2019; 65: 66-71
  • 105 Xiao F, Zhou Y, Liu Y. et al Inhibitory Effect of Sirtuin6 (SIRT6) on Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells. Med Sci Monit 2019; 25: 8412-8421 10.12659/MSM.917118
  • 106 Fernandez-Rebollo E, Eipel M, Seefried L. et al Primary Osteoporosis Is Not Reflected by Disease-Specific DNA Methylation or Accelerated Epigenetic Age in Blood. J Bone Miner Res 2018; 33: 356-361 doi: 10.1002/jbmr.3298
  • 107 Jakob F, Ebert R, Fernandez-Rebollo E. et al Response to Letter to the Editor: Epigenetic Aging in Osteoporosis. J Bone Miner Res 2018; 33: 1904-1905 doi: 10.1002/jbmr.3569
  • 108 Cheishvili D, Parashar S, Mahmood N. et al Identification of an Epigenetic Signature of Osteoporosis in Blood DNA of Postmenopausal Women. J Bone Miner Res 2018; 33: 1980-1989 doi: 10.1002/jbmr.3527
  • 109 Reppe S, Lien TG, Hsu YH. et al Distinct DNA methylation profiles in bone and blood of osteoporotic and healthy postmenopausal women. Epigenetics 2017; 12: 674-687 doi: 10.1080/15592294.2017.1345832
  • 110 Cai N, Li C, Wang F. Silencing of LncRNA-ANCR Promotes the Osteogenesis of Osteoblast Cells in Postmenopausal Osteoporosis via Targeting EZH2 and RUNX2. Yonsei Med J 2019; 60: 751-759 doi: 10.3349/ymj.2019.60.8.751
  • 111 Li M, Yao S, Duan YY. et al Transcription Factor Enrichment Analysis in Enhancers Identifies EZH2 as a Susceptibility Gene for Osteoporosis. J Clin Endocrinol Metab 2020; 105. doi:10.1210/clinem/dgz270
  • 112 Yang R, Chen J, Zhang J. et al 1,25-Dihydroxyvitamin D protects against age-related osteoporosis by a novel VDR-Ezh2-p16 signal axis. Aging Cell 2020; 19: e13095 doi: 10.1111/acel.13095
  • 113 Bottani M, Banfi G, Lombardi G. The Clinical Potential of Circulating miRNAs as Biomarkers: Present and Future Applications for Diagnosis and Prognosis of Age-Associated Bone Diseases. Biomolecules 2020; 10. doi:10.3390/biom10040589
  • 114 Hackl M, Heilmeier U, Weilner S. et al Circulating microRNAs as novel biomarkers for bone diseases - Complex signatures for multifactorial diseases?. Mol Cell Endocrinol 2016; 432: 83-95 doi: 10.1016/j.mce.2015.10.015
  • 115 Faraldi M, Gomarasca M, Banfi G. et al Free Circulating miRNAs Measurement in Clinical Settings: The Still Unsolved Issue of the Normalization. Adv Clin Chem 2018; 87: 113-139 doi: 10.1016/bs.acc.2018.07.003
  • 116 Faraldi M, Sansoni V, Perego S. et al Study of the preanalytical variables affecting the measurement of clinically relevant free-circulating microRNAs: focus on sample matrix, platelet depletion, and storage conditions. Biochem Med (Zagreb) 2020; 30: 010703 doi: 10.11613/BM.2020.010703
  • 117 Ladang A, Beaudart C, Locquet M. et al Evaluation of a Panel of MicroRNAs that Predicts Fragility Fracture Risk: A Pilot Study. Calcif Tissue Int 2020; 106: 239-247 doi: 10.1007/s00223-019-00628-8
  • 118 Li H, Wang Z, Fu Q. et al Plasma miRNA levels correlate with sensitivity to bone mineral density in postmenopausal osteoporosis patients. Biomarkers 2014; 19: 553-556 doi: 10.3109/1354750X.2014.935957
  • 119 Li Z, Zhang W, Huang Y. MiRNA-133a is involved in the regulation of postmenopausal osteoporosis through promoting osteoclast differentiation. Acta Biochim Biophys Sin (Shanghai) 2018; 50: 273-280 doi: 10.1093/abbs/gmy006
  • 120 Seeliger C, Karpinski K, Haug AT. et al Five freely circulating miRNAs and bone tissue miRNAs are associated with osteoporotic fractures. J Bone Miner Res 2014; 29: 1718-1728 doi: 10.1002/jbmr.2175
  • 121 Kelch S, Balmayor ER, Seeliger C. et al miRNAs in bone tissue correlate to bone mineral density and circulating miRNAs are gender independent in osteoporotic patients. Sci Rep 2017; 7: 15861 doi: 10.1038/s41598-017-16113-x
  • 122 Meng J, Zhang D, Pan N. et al Identification of miR-194-5p as a potential biomarker for postmenopausal osteoporosis. PeerJ 2015; 3: e971 doi: 10.7717/peerj.971
  • 123 Bedene A, Mencej Bedrac S, Jese L. et al MiR-148a the epigenetic regulator of bone homeostasis is increased in plasma of osteoporotic postmenopausal women. Wien Klin Wochenschr 2016; 128: 519-526 doi: 10.1007/s00508-016-1141-3
  • 124 Li K, Chen S, Cai P. et al MiRNA-483-5p is involved in the pathogenesis of osteoporosis by promoting osteoclast differentiation. Mol Cell Probes 2020; 49: 101479 doi: 10.1016/j.mcp.2019.101479
  • 125 Lin C, Yu S, Jin R. et al Circulating miR-338 Cluster activities on osteoblast differentiation: Potential Diagnostic and Therapeutic Targets for Postmenopausal Osteoporosis. Theranostics 2019; 9: 3780-3797 doi: 10.7150/thno.34493
  • 126 Zarecki P, Hackl M, Grillari J. et al Serum microRNAs as novel biomarkers for osteoporotic vertebral fractures. Bone 2020; 130: 115105 doi: 10.1016/j.bone.2019.115105
  • 127 Chen YS, Lian WS, Kuo CW. et al Epigenetic Regulation of Skeletal Tissue Integrity and Osteoporosis Development. Int J Mol Sci 2020; 21. doi:10.3390/ijms21144923
  • 128 Ko NY, Chen LR, Chen KH. The Role of Micro RNA and Long-Non-Coding RNA in Osteoporosis. Int J Mol Sci 2020; 21. doi:10.3390/ijms21144886
  • 129 Yang Y, Yujiao W, Fang W. et al The roles of miRNA, lncRNA and circRNA in the development of osteoporosis. Biol Res 2020; 53: 40 doi: 10.1186/s40659-020-00309-z
  • 130 He Y, Chen Y. The potential role of lncRNAs in osteoporosis. J Bone Miner Metab 2021; 39: 341-352 doi: 10.1007/s00774-021-01205-6
  • 131 Engin AB. MicroRNA and Adipogenesis. Adv Exp Med Biol 2017; 960: 489-509 doi: 10.1007/978-3-319-48382-5_21
  • 132 Krzeszinski JY, Wei W, Huynh H. et al miR-34a blocks osteoporosis and bone metastasis by inhibiting osteoclastogenesis and Tgif2. Nature 2014; 512: 431-435 doi: 10.1038/nature13375
  • 133 Ling L, Hu HL, Liu KY. et al Long noncoding RNA MIRG induces osteoclastogenesis and bone resorption in osteoporosis through negative regulation of miR-1897. Eur Rev Med Pharmacol Sci 2019; 23: 10195-10203 doi: 10.26355/eurrev_201912_19654
  • 134 Li CJ, Xiao Y, Yang M. et al Long noncoding RNA Bmncr regulates mesenchymal stem cell fate during skeletal aging. J Clin Invest 2018; 128: 5251-5266 doi: 10.1172/JCI99044
  • 135 Cai R, Tang G, Zhang Q. et al A Novel lnc-RNA, Named lnc-ORA, Is Identified by RNA-Seq Analysis, and Its Knockdown Inhibits Adipogenesis by Regulating the PI3K/AKT/mTOR Signaling Pathway. Cells 2019; 8. doi:10.3390/cells8050477
  • 136 Wang Y, Liu W, Liu Y. et al Long noncoding RNA H19 mediates LCoR to impact the osteogenic and adipogenic differentiation of mBMSCs in mice through sponging miR-188. J Cell Physiol 2018; 233: 7435-7446 doi: 10.1002/jcp.26589
  • 137 Zhu H, Li J, Li Y. et al Glucocorticoid counteracts cellular mechanoresponses by LINC01569-dependent glucocorticoid receptor-mediated mRNA decay. Sci Adv 2021; 7. doi:10.1126/sciadv.abd9923
  • 138 Zhang R, Li J, Li G. et al LncRNA Nron regulates osteoclastogenesis during orthodontic bone resorption. Int J Oral Sci 2020; 12: 14 doi: 10.1038/s41368-020-0077-7
  • 139 Cao Q, Guo Z, Yan Y. et al Exosomal long noncoding RNAs in aging and age-related diseases. IUBMB Life 2019; 71: 1846-1856 doi: 10.1002/iub.2141