Subscribe to RSS
DOI: 10.1055/a-1529-7739
[4+n] Annulation Reactions Using ortho-Chloromethyl Anilines as Aza-ortho-Quinone Methide Precursors
We thank the National Natural Science Foundation of China (Grant No. 21702121) and the 111 Project (D20015) for support of our research in this area.
Abstract
Aza-ortho-quinone methides are important reactive intermediates that have found broad applications in synthetic chemistry. Recently, 1,4-elimination of ortho-chloromethyl aniline derivatives has emerged as a novel, powerful and convenient method for aza-ortho-quinone methide generation. This review will highlight the recent applications of aza-ortho-quinone methide precursors in annulation reactions to access various biologically important nitrogen-containing heterocycles. The general mechanisms are briefly discussed as well.
1 Introduction
2 [4+n] Annulation Reactions Using ortho-Chloromethyl Anilines as Aza-ortho-Quinone Methide Precursors
2.1 [4+2] Annulation Reactions
2.2 [4+1] Annulation Reactions
2.3 [4+3] Annulation Reactions
3 Conclusion and Perspective
Key words
annulation - nitrogen-containing heterocycles - aza-ortho-quinone methides - ortho-chloromethyl anilines - 4-atom unitsPublication History
Received: 27 May 2021
Accepted after revision: 16 June 2021
Accepted Manuscript online:
16 June 2021
Article published online:
27 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 Joule JA, Mills K. Heterocyclic Chemistry, 5th ed. Blackwell; Oxford: 2010
- 2 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
- 3a Wojciechowski K. Eur. J. Org. Chem. 2001; 3587
- 3b Quinone Methides . Rokita SE. John Wiley & Sons; Hoboken: 2009
- 3c Wang Z, Sun J. Synthesis 2015; 47: 3629
- 3d Garuana L, Fochi M, Bernardi L. Molecules 2015; 20: 11733
- 3e Jaworski AA, Scheidt KA. J. Org. Chem. 2016; 81: 10145
- 3f Spivey A, Nielsen C, Abas H. Synthesis 2018; 50: 4008
- 3g Yang B, Gao S. Chem. Soc. Rev. 2018; 47: 7926
- 4 Ma Y.-H, He X.-Y, Yang Q.-Q, Boucherif A, Xuan J. Asian J. Org. Chem. 2021; 10: 1233
- 5a Mao Y.-L, Boekelheide V. J. Org. Chem. 1980; 45: 1547
- 5b Consonni R, Croce PD, Ferraccioli R, La Rosa C. J. Chem. Soc., Perkin Trans. 1 1996; 1809
- 5c Martín N, Martínez-Grau A, Sánchez L, Seoane C, Torres M. J. Org. Chem. 1998; 63: 8074
- 5d Ohno M, Sato H, Eguchi S. Synlett 1999; 207
- 5e Zakrzewski P, Gowan M, Trimble LA, Lau CK. Synthesis 1999; 1893
- 5f Wojciechowski K, Kosinski S. Eur. J. Org. Chem. 2002; 947
- 6a Burgess EM, McCullagh L. J. Am. Chem. Soc. 1966; 88: 1580
- 6b Mukhina OA, Bhuvan Kumar NN, Arisco TM, Valiulin RA, Metzel GA, Kutateladze AG. Angew. Chem. Int. Ed. 2011; 50: 9423
- 6c Kuznetsov DM, Mukhina OA, Kutateladze AG. Angew. Chem. Int. Ed. 2016; 55: 6988
- 6d Liu Y.-Y, Yu X.-Y, Chen J.-R, Qiao M.-M, Qi X, Shi D.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2017; 56: 9527
- 6e Kuznetsov DM, Kutateladze AG. J. Am. Chem. Soc. 2017; 139: 16584
- 6f Liang D, Rao L, Xiao C, Chen J.-R. Org. Lett. 2019; 21: 8783
- 7a Mugrage B, Diefenbacher C, Somers J, Parker D, Parker TT. Tetrahedron Lett. 2000; 41: 2047
- 7b Li G, Liu H, Lv G, Wang Y, Fu Q, Tang Z. Org. Lett. 2015; 17: 4125
- 7c Mei G.-J, Zhu Z.-Q, Zhao J.-J, Bian C.-Y, Chen J, Chen R.-W, Shi F. Chem. Commun. 2017; 53: 2768
- 8 Steinhagen H, Corey EJ. Angew. Chem. Int. Ed. 1999; 38: 1928
- 9a Sridharan V, Suryavanshi PA, Carlos Menendez J. Chem. Rev. 2011; 111: 7157
- 9b Trost BM. Science 1991; 254: 1471
- 10a Steinhagen H, Corey EJ. Org. Lett. 1999; 1: 823
- 10b Omura S, Nakagawa A. Tetrahedron Lett. 1981; 22: 2199
- 10c Hill ML, Raphael RA. Tetrahedron 1990; 46: 4587
- 10d Morimoto Y, Shirahama H. Tetrahedron 1996; 52: 10609
- 11a Avemaris F, Vanderheiden S, Bräse S. Tetrahedron 2003; 59: 6785
- 11b Keck D, Vanderheiden S, Bräse S. Eur. J. Org. Chem. 2006; 21: 4916
- 12 Numata A, Takahashi C, Ito Y, Takada T, Kawai K, Usami Y, Matsumura E, Imachi M, Ito T, Hasegawa T. Tetrahedron Lett. 1993; 34: 2355
- 13a Boal BW, Schammel AW, Garg NK. Org. Lett. 2009; 11: 3458
- 13b Schammel AW, Boal BW, Zu L, Mesganaw T, Garg NK. Tetrahedron 2010; 66: 4687
- 14a May JA, Zeidan RK, Stoltz BM. Tetrahedron Lett. 2003; 44: 1203
- 14b May JA, Stoltz BM. Tetrahedron 2006; 62: 5262
- 15a Wu H.-X, Xue F, Xiao X, Qin Y. J. Am. Chem. Soc. 2010; 132: 14052
- 15b Du Y, Wu H.-X, Song H, Qin Y, Zhang D. Chin. J. Chem. 2012; 30: 1970
- 16 Zhuo C.-X, Zhang W, You S.-L. Angew. Chem. Int. Ed. 2012; 51: 12662
- 17 Lei L, Yao Y.-Y, Jiang L.-J, Lu X, Liang C, Mo D.-L. J. Org. Chem. 2020; 85: 3059
- 18 Jiang S.-P, Lu W.-Q, Liu Z, Wang G.-W. J. Org. Chem. 2018; 83: 1959
- 19 Lee A, Younai A, Price CK, Izquierdo J, Mishra RK, Scheidt KA. J. Am. Chem. Soc. 2014; 136: 10589
- 20 Ji H, He C, Gao H, Fu W, Xu J. Synthesis 2021; 53: 1349
- 21 Wang H.-Q, Ma W, Sun A, Sun X.-Y, Jiang C, Zhang Y.-C, Shi F. Org. Biomol. Chem. 2021; 19: 1334
- 22a Liang D, Xiao W.-J, Chen J.-R. Synthesis 2020; 52: 2469
- 22b Cheng X, Zhou S.-J, Xu G.-Y, Wang L, Yang Q.-Q, Xuan J. Adv. Synth. Catal. 2020; 362: 523
- 22c Liang D, Tan L.-P, Xiao W.-J, Chen J.-R. Chem. Commun. 2020; 56: 3777
- 23 Zheng Y, Tu L, Li N, Huang R, Feng T, Sun H, Li Z, Liu J. Adv. Synth. Catal. 2019; 361: 44
- 24a Xuan J, Cao X, Cheng X. Chem. Commun. 2018; 54: 5154
- 24b Bouakher AE, Martel A, Comesse S. Org. Biomol. Chem. 2019; 17: 8467
- 25 Jin Q, Gao M, Zhang D, Jiang C, Yao N, Zhang J. Org. Biomol. Chem. 2018; 16: 7336
- 26a Joule JA. Product Class 13: Indole and Its Derivatives. In Hetarenes and Related Ring Systems: Fused Five-Membered Hetarenes with One Heteroatom, Science of Synthesis Vol. 10. Thomas EJ. Thieme; Stuttgart: 2001
- 26b Bandini M, Eichholzer A. Angew. Chem. Int. Ed. 2009; 48: 9608
- 26c Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
- 26d Zhang Y.-C, Jiang F, Shi F. Acc. Chem. Res. 2020; 53: 425
- 26e Hua T.-B, Xiao C, Yang Q.-Q, Chen J.-R. Chin. Chem. Lett. 2020; 31: 311
- 27 Chen J.-R, Hu X.-Q, Lu L.-Q, Xiao W.-J. Chem. Rev. 2015; 115: 5301
- 28 Lu L.-Q, Chen J.-R, Xiao W.-J. Acc. Chem. Res. 2012; 45: 1278
- 29 Yang Q.-Q, Xiao C, Lu L.-Q, An J, Tan F, Li B.-J, Xiao W.-J. Angew. Chem. Int. Ed. 2012; 51: 9137
- 30 Yang Q.-Q, Wang Q, An J, Chen J.-R, Lu L.-Q, Xiao W.-J. Chem. Eur. J. 2013; 19: 8401
- 31 Lu L.-Q, Zhang J.-J, Li F, Cheng Y, An J, Chen J.-R, Xiao W.-J. Angew. Chem. Int. Ed. 2009; 48: 9542
- 32 Huang H, Yang Y, Zhang X, Zeng W, Liang Y. Tetrahedron Lett. 2013; 54: 6049
- 33a Hovey MT, Check CT, Sipher AF, Scheidt KA. Angew. Chem. Int. Ed. 2014; 53: 9603
- 33b Sharma HA, Hovey MT, Scheidt KA. Chem. Commun. 2016; 52: 9283
- 34 Jong JA. W, Bao X, Wang Q, Zhu J. Helv. Chim. Acta 2019; 102: e1900002
- 35 Gui H.-Z, Wu X.-Y, Wei Y, Shi M. Adv. Synth. Catal. 2019; 361: 5466
- 36 Eckert KE, Lepore AJ, Ashfeld BL. Helv. Chim. Acta 2019; 102: e1900192
- 37 Hua T.-B, Chao F, Wang L, Yan CY, Xiao C, Yang Q.-Q, Xiao W.-J. Adv. Synth. Catal. 2020; 362: 2615
- 38 Shi Y, Wang G, Wang H, Deng B, Gao T, Wang J, Guo H, Wu M, Sun S. New J. Chem. 2020; 44: 14477
- 39a Harmata M. Adv. Synth. Catal. 2006; 348: 2297
- 39b Jones DE, Harmata M. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses . Nishiwaki N. John Wiley & Sons; Hoboken: 2014
- 40a Harmata M. Chem. Commun. 2010; 46: 8886
- 40b Harmata M. Chem. Commun. 2010; 46: 8904
- 40c Lohse AG, Hsung RP. Chem. Eur. J. 2011; 17: 3812
- 41 Zhan G, Shi M.-L, He Q, Du W, Chen Y.-C. Org. Lett. 2015; 17: 4750
- 42 Liu J.-Y, Lu H, Li C.-G, Liang Y.-M, Xu P.-F. Synlett 2016; 27: 1287
- 43 Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
- 44a Wang L, Li S, Blümel M, Philipps AR, Wang A, Puttreddy R, Rissanen K, Enders D. Angew. Chem. Int. Ed. 2016; 55: 11110
- 44b Li Y, Zhang Z. Eur. J. Org. Chem. 2019; 2989
- 45 Hua T.-B, Yang Q.-Q, Xiao W.-J. Chin. J. Org. Chem. 2020; 40: 3559
- 46 Chen L, Yang G, Wang J, Jia Q, Wei J, Du Z. RSC Adv. 2015; 5: 76696
- 47 Zhi Y, Zhao K, Shu T, Enders D. Synthesis 2016; 48: 238
- 48 Jin Q, Zhang J, Jiang C, Zhang D, Gao M, Hu S. J. Org. Chem. 2018; 83: 8410
- 49 Meng Z, Yang WR, Zheng J. Tetrahedron Lett. 2019; 60: 1758
- 50 Zheng Y.-S, Tu L, Gao L.-M, Huang R, Feng T, Sun H, Wang W.-X, Li Z.-H, Liu J.-K. Org. Biomol. Chem. 2018; 16: 2639
- 51 Zhang X, Pan Y, Liang P, Pang L, Ma X, Jiao W, Shao H. Adv. Synth. Catal. 2018; 360: 3015
- 52 Long W, Chen S, Zhang X, Fang L, Wang Z. Tetrahedron 2018; 74: 6155
- 53 Guo Z, Jia H, Liu H, Wang Q, Huang J, Guo H. Org. Lett. 2018; 20: 2939
Pyrolysis methods:
Photolysis methods:
Brønsted acid methods: