Arthritis und Rheuma 2021; 41(04): 243-254
DOI: 10.1055/a-1530-7216
Schwerpunkt

Das Knochenmarködemsyndrom

Pathophysiologie und differenzialdiagnostische ÜberlegungenBone marrow edema syndromePathophysiology and potential differential diagnoses
Constantin Schmidt
1   Institut für Osteologie und Biomechanik, Universitätsklinikum Hamburg-Eppendorf, Hamburg
1   Fachbereich Orthopädie, Klinik und Poliklinik für Unfallchirurgie und Orthopädie, Universitätsklinikum Hamburg-Eppendorf, Hamburg
,
Maximilian M. Delsmann
1   Institut für Osteologie und Biomechanik, Universitätsklinikum Hamburg-Eppendorf, Hamburg
,
Julian Stürznickel
1   Institut für Osteologie und Biomechanik, Universitätsklinikum Hamburg-Eppendorf, Hamburg
1   Fachbereich Orthopädie, Klinik und Poliklinik für Unfallchirurgie und Orthopädie, Universitätsklinikum Hamburg-Eppendorf, Hamburg
,
Florian Barvencik
1   Institut für Osteologie und Biomechanik, Universitätsklinikum Hamburg-Eppendorf, Hamburg
› Institutsangaben

ZUSAMMENFASSUNG

Das Knochenmarködemsyndrom (KMÖS) ist eine durch pathologische Flüssigkeitsvermehrung im Knochenmark gekennzeichnete Erkrankung, die sich mittels MRT darstellen lässt. Das Spektrum potenziell verursachender Erkrankungen ist groß, wobei sich ätiologisch mechanische, metabolische, reaktive und ischämische KMÖS-Formen voneinander unterscheiden lassen. Zwar ist die Pathophysiologie des KMÖS noch unzureichend verstanden, doch wird ein lokal erhöhter Knochenumbau im Sinne einer aktivierten Knochenresorption angenommen, die zu einer erhöhten Vaskularisation mit konsekutiv vermehrter Flüssigkeitsansammlung führt. Ziel unserer Arbeit war es anhand der pathophysiologischen Überlegungen die möglichen verursachenden Erkrankungen differenzialdiagnostisch zu beleuchten und anhand derer einen diagnostischen Algorithmus zu präsentieren. Dabei zeigen wir, dass sich die verschiedenen KMÖS-Formen oft mittels typischer MRT-morphologischer sowie klinischer und laborchemischer Charakteristika unterscheiden lassen, sodass anhand der richtigen Diagnose gezielt therapeutische Maßnahmen getroffen werden können.

Summary

Bone marrow edema syndrome (BMES) is a disease characterized by a pathologic increase of fluid in the bone marrow which can be visualized by magnetic resonance imaging (MRI). There is a wide spectrum of potentially causative diseases including mechanical, metabolic, reactive, and ischemic forms of BMES. Although the pathophysiology of BMES is insufficiently understood, locally enhanced bone remodeling in terms of activated bone resorption is thought to lead to increased vascularization with consecutively increased fluid accumulation. The aim of our work was to point out possible differential diagnoses and to present a diagnostic algorithm for routine clinical practice. We show that there are typical MRI morphological as well as clinical and laboratory characteristics that help to differentiate the various forms of BMES, so that on the basis of the correct diagnosis specific therapeutic interventions can be taken.



Publikationsverlauf

Artikel online veröffentlicht:
19. August 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Mirghasemi SA, Trepman E, Sadeghi MS. et al Bone Marrow Edema Syndrome in the Foot and Ankle. Foot Ankle Int 2016; 37: 1364-1373
  • 2 Shabestari M, Vik J, Reseland JE. et al Bone marrow lesions in hip osteoarthritis are characterized by increased bone turnover and enhanced angiogenesis. Osteoarthritis Cartilage 2016; 24: 1745-1752
  • 3 Curtiss Jr. PH, Kincaid WE. Transitory demineralization of the hip in pregnancy. A report of three cases. J Bone Joint Surg Am 1959; 41-A: 1327-1333
  • 4 Hunder GG, Kelly PJ. Roentgenologic transient osteoporosis of the hip. A clinical syndrome?. Ann Intern Med 1968; 68: 539-552
  • 5 Lequesne M. Transient osteoporosis of the hip. A nontraumatic variety of Sudeck’s atrophy. Ann Rheum Dis 1968; 27: 463-471
  • 6 Wilson AJ, Murphy WA, Hardy DC. et al Transient osteoporosis: transient bone marrow edema?. Radiology 1988; 167: 757-760
  • 7 Rolvien T, Schmidt T, Butscheidt S. et al Denosumab is effective in the treatment of bone marrow oedema syndrome. Injury 2017; 48: 874-879
  • 8 Thiryayi WA, Thiryayi SA, Freemont AJ. Histopathological perspective on bone marrow oedema, reactive bone change and haemorrhage. Eur J Radiol 2008; 67: 62-67
  • 9 Zaidi M. Skeletal remodeling in health and disease. Nat Med 2007; 13: 791-801
  • 10 Robling AG, Bonewald LF. The Osteocyte: New Insights. Annu Rev Physiol 2020; 82: 485-506
  • 11 Reginster JY, Burlet N. Osteoporosis: a still increasing prevalence. Bone 2006; 38: S4-S9
  • 12 Alexandre C, Vico L. Pathophysiology of bone loss in disuse osteoporosis. Joint Bone Spine 2011; 78: 572-576
  • 13 Kim HK, Randall TS, Bian H. et al Ibandronate for prevention of femoral head deformity after ischemic necrosis of the capital femoral epiphysis in immature pigs. J Bone Joint Surg Am 2005; 87: 550-557
  • 14 Kim HK, Morgan-Bagley S, Kostenuik P. RANKL inhibition: a novel strategy to decrease femoral head deformity after ischemic osteonecrosis. J Bone Miner Res 2006; 21: 1946-1954
  • 15 Ringe JD, Dorst A, Faber H. Effective and rapid treatment of painful localized transient osteoporosis (bone marrow edema) with intravenous ibandronate. Osteoporos Int 2005; 16: 2063-2068
  • 16 Simon MJ, Barvencik F, Luttke M. et al Intravenous bisphosphonates and vitamin D in the treatment of bone marrow oedema in professional athletes. Injury 2014; 45: 981-987
  • 17 Geith T, Mutschler W, Berger F. [Therapy of bone marrow edema syndrome in the knee with denosumab. Case report]. Unfallchirurg 2015; 118: 230-232
  • 18 Hoenig T, Tenforde AS, Strahl A. et al Does Magnetic Resonance Imaging Grading Correlate With Return to Sports After Bone Stress Injuries? A Systematic Review and Meta-analysis. Am J Sports Med 2021; 363546521993807
  • 19 Hayashi D, Jarraya M, Engebretsen L. et al Epidemiology of imaging-detected bone stress injuries in athletes participating in the Rio de Janeiro 2016 Summer Olympics. Br J Sports Med 2018; 52: 470-474
  • 20 Rauch F, Schoenau E. Skeletal development in premature infants: a review of bone physiology beyond nutritional aspects. Arch Dis Child Fetal Neonatal Ed 2002; 86: F82-F85
  • 21 Priemel M, von Domarus C, Klatte TO. et al Bone mineralization defects and vitamin D deficiency: histomorphometric analysis of iliac crest bone biopsies and circulating 25-hydroxyvitamin D in 675 patients. J Bone Miner Res 2010; 25: 305-312
  • 22 Minisola S, Colangelo L, Pepe J. et al Osteomalacia and Vitamin D Status: A Clinical Update 2020. JBMR Plus 2021; 5: e10447
  • 23 Rabenberg M, Mensik G. Vitamin-D-Status in Deutschland. Journal of Health Monitoring 2016; 1 (02) 36-42
  • 24 Bouillon R, Marcocci C, Carmeliet G. et al Skeletal and Extraskeletal Actions of Vitamin D: Current Evidence and Outstanding Questions. Endocr Rev 2019; 40: 1109-1151
  • 25 Busse B, Bale HA, Zimmermann EA. et al Vitamin D deficiency induces early signs of aging in human bone, increasing the risk of fracture. Sci Transl Med 2013; 5: 193ra188
  • 26 Schmidt T, Amling M, Barvencik F. [Hypophosphatasia: What is currently available for treatment?]. Internist (Berl) 2016; 57: 1145-1154
  • 27 Schmidt T, Mussawy H, Rolvien T. et al Clinical, radiographic and biochemical characteristics of adult hypophosphatasia. Osteoporos Int 2017; 28: 2653-2662
  • 28 Mornet E, Taillandier A, Domingues C. et al Hypophosphatasia: a genetic-based nosology and new insights in genotype-phenotype correlation. Eur J Hum Genet 2021; 29: 289-299
  • 29 Lecoq AL, Brandi ML, Linglart A. et al Management of X-linked hypophosphatemia in adults. Metabolism 2020; 103 S: 154049
  • 30 Beck-Nielsen SS, Brock-Jacobsen B, Gram J. et al Incidence and prevalence of nutritional and hereditary rickets in southern Denmark. Eur J Endocrinol 2009; 160: 491-497
  • 31 Mussawy H, Schmidt T, Rolvien T. et al Evaluation of bone microstructure in CRPS-affected upper limbs by HR-pQCT. Clin Cases Miner Bone Metab 2017; 14: 54-59
  • 32 Korompilias AV, Karantanas AH, Lykissas MG. et al Bone marrow edema syndrome. Skeletal Radiol 2009; 38: 425-436
  • 33 Oehler N, Rolvien T, Schmidt T. et al Bone microstructure is significantly altered in CRPS-affected distal tibiae as detected by HR-pQCT: a retrospective cross-sectional study. J Bone Miner Metab 2019; 37: 741-748
  • 34 Hogan CJ, Hurwitz SR. Treatment of complex regional pain syndrome of the lower extremity. J Am Acad Orthop Surg 2002; 10: 281-289
  • 35 Hofmann S, Kramer J, Vakil-Adli A. et al Painful bone marrow edema of the knee: differential diagnosis and therapeutic concepts. Orthop Clin North Am 2004; 35: 321-333, ix
  • 36 Amling M, Takeda S, Karsenty G. A neuro (endo)crine regulation of bone remodeling. Bioessays 2000; 22: 970-975
  • 37 Elefteriou F, Ahn JD, Takeda S. et al Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 2005; 434: 514-520
  • 38 Robinson JN, Sandom J, Chapman PT. Efficacy of pamidronate in complex regional pain syndrome type I. Pain Med 2004; 5: 276-280
  • 39 Varenna M. Bisphosphonates beyond their anti-osteoclastic properties. Rheumatology (Oxford) 2014; 53: 965-967
  • 40 Varenna M, Adami S, Rossini M. et al Treatment of complex regional pain syndrome type I with neridronate: a randomized, double-blind, placebo-controlled study. Rheumatology (Oxford) 2013; 52: 534-542
  • 41 Birklein F. et al Diagnostik und Therapie komplexer regionaler Schmerzsyndrome (CRPS), S1-Leitlinie. Leitlinien für Diagnostik und Therapie in der Neurologie 2018.
  • 42 Buch K, Thuesen ACB, Brons C. et al Chronic Non-bacterial Osteomyelitis: A Review. Calcif Tissue Int 2019; 104: 544-553
  • 43 Girschick H, Finetti M, Orlando F. et al The multifaceted presentation of chronic recurrent multifocal osteomyelitis: a series of 486 cases from the Eurofever international registry. Rheumatology (Oxford) 2018; 57: 1203-1211
  • 44 Berkowitz YJ, Greenwood SJ, Cribb G. et al Complete resolution and remodeling of chronic recurrent multifocal osteomyelitis on MRI and radiographs. Skeletal Radiol 2018; 47: 563-568
  • 45 von Kalle T, Heim N, Hospach T. et al Typical patterns of bone involvement in whole-body MRI of patients with chronic recurrent multifocal osteomyelitis (CRMO). Rofo 2013; 185: 655-661
  • 46 Costa-Reis P, Sullivan KE. Chronic recurrent multifocal osteomyelitis. J Clin Immunol 2013; 33: 1043-1056
  • 47 Simm PJ, Allen RC, Zacharin MR. Bisphosphonate treatment in chronic recurrent multifocal osteomyelitis. J Pediatr 2008; 152: 571-575
  • 48 James SL, Panicek DM, Davies AM. Bone marrow oedema associated with benign and malignant bone tumours. Eur J Radiol 2008; 67: 11-21
  • 49 Plenk Jr. H, Hofmann S, Eschberger J. et al Histomorphology and bone morphometry of the bone marrow edema syndrome of the hip. Clin Orthop Relat Res 1997; 73-84
  • 50 Glueck CJ, Freiberg RA, Fontaine RN. et al Hypofibrinolysis, thrombophilia, osteonecrosis. Clin Orthop Relat Res 2001; 19-33
  • 51 Glueck CJ, Freiberg RA, Boriel G. et al The role of the factor V Leiden mutation in osteonecrosis of the hip. Clin Appl Thromb Hemost 2013; 19: 499-503
  • 52 Haque W, Kadikoy H, Pacha O. et al Osteonecrosis secondary to antiphospholipid syndrome: a case report, review of the literature, and treatment strategy. Rheumatol Int 2010; 30: 719-723
  • 53 Milner PF, Kraus AP, Sebes JI. et al Sickle cell disease as a cause of osteonecrosis of the femoral head. N Engl J Med 1991; 325: 1476-1481