Synthesis 2021; 53(21): 4124-4130 DOI: 10.1055/a-1531-2248
Catalyst- and Additive-Free Synthesis of Fluoroalkoxyquinolines
Ankit Kumar Dhiman
a
Chemical Technology Division, CSIR-IHBT, Palampur-176061, India
b
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
,
Rohit Kumar
a
Chemical Technology Division, CSIR-IHBT, Palampur-176061, India
b
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
,
a
Chemical Technology Division, CSIR-IHBT, Palampur-176061, India
b
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
› Author Affiliations This work is supported by the Council of Scientific and Industrial Research (CSIR), New Delhi (MLP0159). A.K.D. and R.K. thank CSIR, New Delhi for senior research fellowships.
Abstract
A nucleophilic substitution approach has been developed for the synthesis of C4 fluoroalkoxyquinolines from 4-haloquinolines by utilizing hexafluoro-2-propanol and trifluoroethanol as nucleophiles. The method is also applicable for 2-chloroquinolines, 1-chloroisoquinoline, and 2-chlorobenzimidazole. Control experiments revealed that substitution occurs only at the C2 and C4 positions of quinolines.
Key words
4-chloroquinoline -
2-chloroquinoline -
1-chloroisoquinoline -
HFIP -
fluoroalkoxylation
Supporting Information
Supporting information for this article is available online at https://doi.org/10.1055/a-1531-2248.
Supporting Information
Publication History
Received: 12 May 2021
Accepted after revision: 17 June 2021
Accepted Manuscript online: 17 June 2021
Article published online: 20 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG Rüdigerstraße 14, 70469 Stuttgart, Germany
References
1a
Conn HL,
Luchi RJ.
Am. J. Med. 1964; 37: 685
1b
Vasquez Vivar J,
Augusto O.
J. Biol. Chem. 1992; 267: 6848
1c
Chen YL,
Fang KC,
Sheu JY,
Hsu SL,
Tzeng CC.
J. Med. Chem. 2001; 44: 2374
1d
Kumar S,
Bawa S,
Gupta H.
Mini-Rev. Med. Chem. 2010; 9: 1648
1e
Bawa S,
Kumar S,
Drabu S,
Kumar R.
J. Pharm. Bioallied Sci. 2010; 2: 64
1f
Achan J,
Talisuna AO,
Erhart A,
Yeka A,
Tibenderana JK,
Baliraine FN,
Rosenthal PJ,
D’Alessandro U.
Malar. J. 2011; 10: 144
1g
Keri RS,
Patil SA.
Biomed. Pharmacother. 2014; 68: 1161
1h
Shang XF,
Morris-Natschke SL,
Liu YQ,
Guo X,
Xu XS,
Goto M,
Li JC,
Yang GZ,
Lee KH.
Med. Res. Rev. 2018; 38: 775
2
Wildman SA,
Crippen GM.
J. Chem. Inf. Comput. Sci. 1999; 39: 868
3
van Niel MB,
Collins I,
Beer MS,
Broughton HB,
Cheng SK,
Goodacre SC,
Heald A,
Locker KL,
MacLeod AM,
Morrison D,
Moyes CR.
J. Med. Chem. 1999; 42: 2087
4a
Barnette WE,
Nicolaou KC.
Crit. Rev. Biochem. 1984; 15: 201
4b
Clader JW.
J. Med. Chem. 2004; 47: 1
5a
O’Neill PM,
Storr RC,
Park BK.
Tetrahedron 1998; 54: 4615
5b
Crockett M,
Kain KC.
Expert Opin. Invest. Drugs 2007; 16: 705
5c
Müller K,
Faeh C,
Diederich F.
Science 2007; 317: 1881
5d
Hird M.
Chem. Soc. Rev. 2007; 36: 2070
5e
Purser S,
Moore PR,
Swallow S,
Gouverneur V.
Chem. Soc. Rev. 2008; 37: 320
5f
Wang J,
Sánchez-Roselló M,
Aceña JL,
Del Pozo C,
Sorochinsky AE,
Fustero S,
Liu H.
Chem. Rev. 2014; 114: 2432
6
Stephens DE,
Chavez G,
Valdes M,
Dovalina M,
Arman HD,
Larionov OV.
Org. Biomol. Chem. 2014; 12: 6190
7
Zhang D,
Qiao K,
Hua J,
Liu Z,
Qi H,
Yang Z,
Zhu N,
Fang Z,
Guo K.
Org. Chem. Front. 2018; 15: 2340
8
Iwai T,
Sawamura M.
ACS Catal. 2015; 5: 5031
9
Pethő B,
Zwillinger M,
Csenki J,
Káncz A,
Krámos B,
Müller J,
Balogh GT,
Novák Z.
Chem. Eur. J. 2017; 23: 15628
10
Shen X,
Neumann CN,
Kleinlein C,
Goldberg NW,
Ritter T.
Angew. Chem. Int. Ed. 2015; 54: 5662
11a
Sinha SK,
Bhattacharya T,
Maiti D.
React. Chem. Eng. 2019; 4: 1492
11b
Bhattacharya T,
Ghosh A,
Maiti D.
Chem. Sci. 2021; 12: 3857
12
Chen L,
Chen S,
Michoud C.
US 2006/0004046 Al, 2006
13a
Rohrbach S,
Smith AJ,
Pang JH,
Poole DL,
Tuttle T,
Chiba S,
Murphy JA.
Angew. Chem. Int. Ed. 2019; 58: 16368
13b
Ando S,
Tsuzaki M,
Ishizuka T.
J. Org. Chem. 2020; 85: 11181