Subscribe to RSS
DOI: 10.1055/a-1531-2248
Catalyst- and Additive-Free Synthesis of Fluoroalkoxyquinolines
This work is supported by the Council of Scientific and Industrial Research (CSIR), New Delhi (MLP0159). A.K.D. and R.K. thank CSIR, New Delhi for senior research fellowships.
Abstract
A nucleophilic substitution approach has been developed for the synthesis of C4 fluoroalkoxyquinolines from 4-haloquinolines by utilizing hexafluoro-2-propanol and trifluoroethanol as nucleophiles. The method is also applicable for 2-chloroquinolines, 1-chloroisoquinoline, and 2-chlorobenzimidazole. Control experiments revealed that substitution occurs only at the C2 and C4 positions of quinolines.
Supporting Information
- Supporting information for this article is available online at https://doi.org/10.1055/a-1531-2248.
- Supporting Information
Primary Data
- Primary Data
Primary data for this article are available online at https://zenodo.org/record/5109235 and can be cited using the following DOI: 10.5281/zenodo.5109235.
Publication History
Received: 12 May 2021
Accepted after revision: 17 June 2021
Accepted Manuscript online:
17 June 2021
Article published online:
20 July 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1a Conn HL, Luchi RJ. Am. J. Med. 1964; 37: 685
- 1b Vasquez Vivar J, Augusto O. J. Biol. Chem. 1992; 267: 6848
- 1c Chen YL, Fang KC, Sheu JY, Hsu SL, Tzeng CC. J. Med. Chem. 2001; 44: 2374
- 1d Kumar S, Bawa S, Gupta H. Mini-Rev. Med. Chem. 2010; 9: 1648
- 1e Bawa S, Kumar S, Drabu S, Kumar R. J. Pharm. Bioallied Sci. 2010; 2: 64
- 1f Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D’Alessandro U. Malar. J. 2011; 10: 144
- 1g Keri RS, Patil SA. Biomed. Pharmacother. 2014; 68: 1161
- 1h Shang XF, Morris-Natschke SL, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Yang GZ, Lee KH. Med. Res. Rev. 2018; 38: 775
- 2 Wildman SA, Crippen GM. J. Chem. Inf. Comput. Sci. 1999; 39: 868
- 3 van Niel MB, Collins I, Beer MS, Broughton HB, Cheng SK, Goodacre SC, Heald A, Locker KL, MacLeod AM, Morrison D, Moyes CR. J. Med. Chem. 1999; 42: 2087
- 4a Barnette WE, Nicolaou KC. Crit. Rev. Biochem. 1984; 15: 201
- 4b Clader JW. J. Med. Chem. 2004; 47: 1
- 5a O’Neill PM, Storr RC, Park BK. Tetrahedron 1998; 54: 4615
- 5b Crockett M, Kain KC. Expert Opin. Invest. Drugs 2007; 16: 705
- 5c Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
- 5d Hird M. Chem. Soc. Rev. 2007; 36: 2070
- 5e Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
- 5f Wang J, Sánchez-Roselló M, Aceña JL, Del Pozo C, Sorochinsky AE, Fustero S, Liu H. Chem. Rev. 2014; 114: 2432
- 6 Stephens DE, Chavez G, Valdes M, Dovalina M, Arman HD, Larionov OV. Org. Biomol. Chem. 2014; 12: 6190
- 7 Zhang D, Qiao K, Hua J, Liu Z, Qi H, Yang Z, Zhu N, Fang Z, Guo K. Org. Chem. Front. 2018; 15: 2340
- 8 Iwai T, Sawamura M. ACS Catal. 2015; 5: 5031
- 9 Pethő B, Zwillinger M, Csenki J, Káncz A, Krámos B, Müller J, Balogh GT, Novák Z. Chem. Eur. J. 2017; 23: 15628
- 10 Shen X, Neumann CN, Kleinlein C, Goldberg NW, Ritter T. Angew. Chem. Int. Ed. 2015; 54: 5662
- 11a Sinha SK, Bhattacharya T, Maiti D. React. Chem. Eng. 2019; 4: 1492
- 11b Bhattacharya T, Ghosh A, Maiti D. Chem. Sci. 2021; 12: 3857
-
12
Chen L,
Chen S,
Michoud C.
US 2006/0004046 Al, 2006