Synthesis 2021; 53(21): 4124-4130
DOI: 10.1055/a-1531-2248
paper

Catalyst- and Additive-Free Synthesis of Fluoroalkoxyquinolines

Ankit Kumar Dhiman
a   Chemical Technology Division, CSIR-IHBT, Palampur-176061, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
,
Rohit Kumar
a   Chemical Technology Division, CSIR-IHBT, Palampur-176061, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
,
a   Chemical Technology Division, CSIR-IHBT, Palampur-176061, India
b   Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
› Author Affiliations
This work is supported by the Council of Scientific and Industrial Research (CSIR), New Delhi (MLP0159). A.K.D. and R.K. thank CSIR, New Delhi for senior research fellowships.


Abstract

A nucleophilic substitution approach has been developed for the synthesis of C4 fluoroalkoxyquinolines from 4-haloquinolines by utilizing hexafluoro-2-propanol and trifluoroethanol as nucleophiles. The method is also applicable for 2-chloroquinolines, 1-chloroisoquinoline, and 2-chlorobenzimidazole. Control experiments revealed that substitution occurs only at the C2 and C4 positions of quinolines.

Supporting Information

Primary Data



Publication History

Received: 12 May 2021

Accepted after revision: 17 June 2021

Accepted Manuscript online:
17 June 2021

Article published online:
20 July 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Conn HL, Luchi RJ. Am. J. Med. 1964; 37: 685
    • 1b Vasquez Vivar J, Augusto O. J. Biol. Chem. 1992; 267: 6848
    • 1c Chen YL, Fang KC, Sheu JY, Hsu SL, Tzeng CC. J. Med. Chem. 2001; 44: 2374
    • 1d Kumar S, Bawa S, Gupta H. Mini-Rev. Med. Chem. 2010; 9: 1648
    • 1e Bawa S, Kumar S, Drabu S, Kumar R. J. Pharm. Bioallied Sci. 2010; 2: 64
    • 1f Achan J, Talisuna AO, Erhart A, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D’Alessandro U. Malar. J. 2011; 10: 144
    • 1g Keri RS, Patil SA. Biomed. Pharmacother. 2014; 68: 1161
    • 1h Shang XF, Morris-Natschke SL, Liu YQ, Guo X, Xu XS, Goto M, Li JC, Yang GZ, Lee KH. Med. Res. Rev. 2018; 38: 775
  • 2 Wildman SA, Crippen GM. J. Chem. Inf. Comput. Sci. 1999; 39: 868
  • 3 van Niel MB, Collins I, Beer MS, Broughton HB, Cheng SK, Goodacre SC, Heald A, Locker KL, MacLeod AM, Morrison D, Moyes CR. J. Med. Chem. 1999; 42: 2087
    • 4a Barnette WE, Nicolaou KC. Crit. Rev. Biochem. 1984; 15: 201
    • 4b Clader JW. J. Med. Chem. 2004; 47: 1
    • 5a O’Neill PM, Storr RC, Park BK. Tetrahedron 1998; 54: 4615
    • 5b Crockett M, Kain KC. Expert Opin. Invest. Drugs 2007; 16: 705
    • 5c Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 5d Hird M. Chem. Soc. Rev. 2007; 36: 2070
    • 5e Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 5f Wang J, Sánchez-Roselló M, Aceña JL, Del Pozo C, Sorochinsky AE, Fustero S, Liu H. Chem. Rev. 2014; 114: 2432
  • 6 Stephens DE, Chavez G, Valdes M, Dovalina M, Arman HD, Larionov OV. Org. Biomol. Chem. 2014; 12: 6190
  • 7 Zhang D, Qiao K, Hua J, Liu Z, Qi H, Yang Z, Zhu N, Fang Z, Guo K. Org. Chem. Front. 2018; 15: 2340
  • 8 Iwai T, Sawamura M. ACS Catal. 2015; 5: 5031
  • 9 Pethő B, Zwillinger M, Csenki J, Káncz A, Krámos B, Müller J, Balogh GT, Novák Z. Chem. Eur. J. 2017; 23: 15628
  • 10 Shen X, Neumann CN, Kleinlein C, Goldberg NW, Ritter T. Angew. Chem. Int. Ed. 2015; 54: 5662
    • 11a Sinha SK, Bhattacharya T, Maiti D. React. Chem. Eng. 2019; 4: 1492
    • 11b Bhattacharya T, Ghosh A, Maiti D. Chem. Sci. 2021; 12: 3857
  • 12 Chen L, Chen S, Michoud C. US 2006/0004046 Al, 2006
    • 13a Rohrbach S, Smith AJ, Pang JH, Poole DL, Tuttle T, Chiba S, Murphy JA. Angew. Chem. Int. Ed. 2019; 58: 16368
    • 13b Ando S, Tsuzaki M, Ishizuka T. J. Org. Chem. 2020; 85: 11181