Subscribe to RSS
DOI: 10.1055/a-1538-6295
Safety Aspects of Perinatal Ultrasound
Sicherheitsaspekte des perinatalen UltraschallsAbstract
Ultrasound safety is of particular importance in fetal and neonatal scanning. Fetal tissues are vulnerable and often still developing, the scanning depth may be low, and potential biological effects have been insufficiently investigated. On the other hand, the clinical benefit may be considerable. The perinatal period is probably less vulnerable than the first and second trimesters of pregnancy, and ultrasound is often a safer alternative to other diagnostic imaging modalities. Here we present step-by-step procedures for obtaining clinically relevant images while maintaining ultrasound safety. We briefly discuss the current status of the field of ultrasound safety, with special attention to the safety of novel modalities, safety considerations when ultrasound is employed for research and education, and ultrasound of particularly vulnerable tissues, such as the neonatal lung. This CME is prepared by ECMUS, the safety committee of EFSUMB, with contributions from OB/GYN clinicians with a special interest in ultrasound safety.
Zusammenfassung
Die Sicherheit des Ultraschalls ist bei der Untersuchung von Föten und Neugeborenen von besonderer Bedeutung. Fetales Gewebe ist empfindlich und befindet sich meist noch in der Entwicklung, die Eindringtiefe kann gering sein und mögliche biologische Effekte sind nur unzureichend untersucht worden. Andererseits kann der klinische Nutzen beträchtlich sein. In der Perinatalperiode ist der Fötus wohl weniger gefährdet als im ersten und zweiten Trimester der Schwangerschaft, und Ultraschall ist häufig eine sicherere Alternative verglichen mit anderen diagnostischen bildgebenden Verfahren. Hier stellen wir Schritt für Schritt das Vorgehen vor, um klinisch relevante Bilder zu erhalten und gleichzeitig die Ultraschallsicherheit zu gewährleisten. Wir erörtern kurz den aktuellen Stand auf dem Gebiet der Ultraschallsicherheit, mit besonderem Augenmerk auf der Sicherheit neuer Modalitäten, Überlegungen zur Sicherheit beim Einsatz von Ultraschall in Forschung und Ausbildung sowie die Sonografie besonders gefährdeter Gewebe, wie z. B. der neonatalen Lunge. Diese CME-Arbeit wurde von ECMUS, dem Sicherheitsausschuss der EFSUMB, unter Mitwirkung von Gynäkologen mit besonderem Interesse an der Ultraschallsicherheit erstellt.
Publication History
Article published online:
05 August 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 Chapman A, ter Haar G. Thermal ablation of uterine fibroids using MR-guided focused ultrasound-a truly non-invasive treatment modality. Eur Radiol 2007; 17: 2505-2511
- 2 Retz K, Kotopoulis S, Kiserud T. et al. Measured acoustic intensities for clinical diagnostic ultrasound transducers and correlation with thermal index. Ultrasound Obstet Gynecol 2017; 50: 236-241
- 3 Stampalija T, Gyte GM, Alfirevic Z. Utero-placental Doppler ultrasound for improving pregnancy outcome. Cochrane Database Syst Rev 2010;
- 4 Skrastad RB, Eik-Nes SH, Sviggum O. et al. A randomized controlled trial of third-trimester routine ultrasound in a non-selected population. Acta Obstet Gynecol Scand 2013; 92: 1353-1360
- 5 Kahrs BH, Usman S, Ghi T. et al. Sonographic prediction of outcome of vacuum deliveries: a multicenter, prospective cohort study. American journal of obstetrics and gynecology 2017; 217: 69e61-69e10
- 6 Torkildsen EA, Salvesen KA, Eggebo TM. Prediction of delivery mode with transperineal ultrasound in women with prolonged first stage of labor. Ultrasound Obstet Gynecol 2011; 37: 702-708
- 7 Janbu T, Koss KS, Nesheim BI. et al. Blood velocities in the uterine artery in humans during labour. Acta Physiol Scand 1985; 124: 153-161
- 8 Sato M, Noguchi J, Mashima M. et al. 3D power Doppler ultrasound assessment of placental perfusion during uterine contraction in labor. Placenta 2016; 45: 32-36
- 9 Dall’Asta A, Ghi T, Rizzo G. et al. Cerebroplacental ratio assessment in early labor in uncomplicated term pregnancy and prediction of adverse perinatal outcome: prospective multicenter study. Ultrasound Obstet Gynecol 2019; 53: 481-487
- 10 Iams JD, Goldenberg RL, Meis PJ. et al. The length of the cervix and the risk of spontaneous premature delivery. National Institute of Child Health and Human Development Maternal Fetal Medicine Unit Network. N Engl J Med 1996; 334: 567-572
- 11 Hernandez-Andrade E, Romero R, Korzeniewski SJ. et al. Cervical strain determined by ultrasound elastography and its association with spontaneous preterm delivery. Journal of perinatal medicine 2014; 42: 159-169
- 12 Gesthuysen A, Hammer K, Mollers M. et al. Evaluation of Cervical Elastography Strain Pattern to Predict Preterm Birth. Ultraschall Med 2020; 41: 397-403
- 13 Issaoui M, Debost-Legrand A, Skerl K. et al. Shear wave elastography safety in fetus: A quantitative health risk assessment. Diagn Interv Imaging 2018; 99: 519-524
- 14 Arioz Habibi H, Alici Davutoglu E, Kandemirli SG. et al. In vivo assessment of placental elasticity in intrauterine growth restriction by shear-wave elastography. Eur J Radiol 2017; 97: 16-20
- 15 Hernandez-Andrade E, Maymon E, Luewan S. et al. A soft cervix, categorized by shear-wave elastography, in women with short or with normal cervical length at 18–24 weeks is associated with a higher prevalence of spontaneous preterm delivery. Journal of perinatal medicine 2018; 46: 489-501
- 16 Jastrow N, Demers S, Chaillet N. et al. Lower uterine segment thickness to prevent uterine rupture and adverse perinatal outcomes: a multicenter prospective study. American journal of obstetrics and gynecology 2016; 215: 604e601-604e606
- 17 Abramowicz JS. Ultrasonographic contrast media: has the time come in obstetrics and gynecology?. J Ultrasound Med 2005; 24: 517-531
- 18 Bailey C, Huisman T, de Jong RM. et al. Contrast-Enhanced Ultrasound and Elastography Imaging of the Neonatal Brain: A Review. J Neuroimaging 2017; 27: 437-441
- 19 BMUS. Guidelines for the safe use of diagnostic ultrasound equipment. The Safety group of the British Medical Ultrasound Society; 2009
- 20 Pellicer B, Herraiz S, Taboas E. et al. Ultrasound bioeffects in rats: quantification of cellular damage in the fetal liver after pulsed Doppler imaging. Ultrasound Obstet Gynecol 2011; 37: 643-648
- 21 Kremkau FW. Clinical benefit of higher acoustic output levels. Ultrasound Med Biol 1989; 15 (Suppl. 01) 69-70
- 22 Harris GR, Stewart HF, Leo FP. et al. Relationship between image quality and ultrasound exposure level in diagnostic US devices. Radiology 1989; 173: 313-317
- 23 Hocevar Z, Rozman J, Paska AV. et al. Gene expression profiling of rat fetuses exposed to 2-dimensional ultrasound. J Ultrasound Med 2012; 31: 923-932
- 24 Ang Jr ES, Gluncic V, Duque A. et al. Prenatal exposure to ultrasound waves impacts neuronal migration in mice. Proc Natl Acad Sci U S A 2006; 103: 12903-12910
- 25 Schneider-Kolsky ME, Ayobi Z, Lombardo P. et al. Ultrasound exposure of the foetal chick brain: effects on learning and memory. Int J Dev Neurosci 2009; 27: 677-683
- 26 Newnham JP, Evans SF, Michael CA. et al. Effects of frequent ultrasound during pregnancy: a randomised controlled trial. Lancet 1993; 342: 887-891
- 27 Salvesen KA. Epidemiological prenatal ultrasound studies. Prog Biophys Mol Biol 2007; 93: 295-300
- 28 Campbell JD, Elford RW, Brant RF. Case-control study of prenatal ultrasonography exposure in children with delayed speech. CMAJ 1993; 149: 1435-1440
- 29 Salvesen KA, Vatten LJ, Bakketeig LS. et al. Routine ultrasonography in utero and speech development. Ultrasound Obstet Gynecol 1994; 4: 101-103
- 30 Webb SJ, Garrison MM, Bernier R. et al. Severity of ASD symptoms and their correlation with the presence of copy number variations and exposure to first trimester ultrasound. Autism Res 2017; 10: 472-484
- 31 Rosman NP, Vassar R, Doros G. et al. Association of Prenatal Ultrasonography and Autism Spectrum Disorder. JAMA Pediatr 2018; 172: 336-344
- 32 Stoch YK, Williams CJ, Granich J. et al. Are prenatal ultrasound scans associated with the autism phenotype? Follow-up of a randomised controlled trial. J Autism Dev Disord 2012; 42: 2693-2701
- 33 Kieler H, Cnattingius S, Haglund B. et al. Sinistrality--a side-effect of prenatal sonography: a comparative study of young men. Epidemiology 2001; 12: 618-623
- 34 Sande RK, Matre K, Eide GE. et al. Ultrasound safety in early pregnancy: reduced energy setting does not compromise obstetric Doppler measurements. Ultrasound Obstet Gynecol 2012; 39: 438-443
- 35 Sande RK, Matre K, Eide GE. et al. The effects of reducing the thermal index for bone from 1.0 to 0.5 and 0.1 on common obstetric pulsed wave Doppler measurements in the second half of pregnancy. Acta Obstet Gynecol Scand 2013; 92: 790-796
- 36 Sande RK, Matre K, Eide GE. et al. The effect of ultrasound output level on obstetric biometric measurements. Ultrasound Med Biol 2013; 39: 37-43
- 37 Miller DL, Dong Z, Dou C. et al. Pulmonary Capillary Hemorrhage Induced by Different Imaging Modes of Diagnostic Ultrasound. Ultrasound Med Biol 2018; 44: 1012-1021
- 38 Miller DL, Dong Z, Dou C. et al. Pulmonary Capillary Hemorrhage Induced by Acoustic Radiation Force Impulse Shear Wave Elastography in Ventilated Rats. J Ultrasound Med 2019;
- 39 Liu Y, Herman BA, Soneson JE. et al. Thermal safety simulations of transient temperature rise during acoustic radiation force-based ultrasound elastography. Ultrasound Med Biol 2014; 40: 1001-1014