Subscribe to RSS
DOI: 10.1055/a-1552-4236
Strukturierte Implementierung und modulares inhouse Training als zentrale Erfolgsfaktoren in der robotisch assistierten Chirurgie – Evaluation am Beispiel der kolorektalen Chirurgie
Structured Implementation and Modular In-house Training as Key Success Factors in Robotically Assisted Surgery – Evaluation Using the Example of Colorectal Surgery
Zusammenfassung
Hintergrund Darstellung der Anwendbarkeit einer strukturierten Implementierung der robotisch assistierten Chirurgie (RAS) und Evaluation einer modularen Trainingsoperation in der Implementierungsphase im Inhouse-Mentoring.
Methoden Umsetzung eines selbstdefinierten PDCA-Implementierungszyklus (PDCA: Plan–Do–Check–Act) begleitet durch die prospektive Datenerhebung von Patientencharakteristika, OP-Zeiten, Komplikationen, Konversionsraten und postoperativen Liegezeiten einer zeitlich und inhaltlich modular definierten Trainingsoperation (robotisch assistierte Rektosigmoidresektion – RARSR).
Ergebnisse Evaluation von 100 konsekutiven Operationen verteilt auf 3 Trainees und einen Inhouse-Mentor als interne Kontrollgruppe. Darstellung einer qualitativ sicheren und erfolgreichen Implementierung mit kurzer Lernkurve der Trainingsoperation bei balancierten Patientencharakteristika.
Schlussfolgerung Eine strukturierte Implementierung ermöglicht die sichere Einführung der RAS in der Viszeralchirurgie. Modulare Trainingsoperationen können dabei die Adoption der RAS durch die Anwender unter Alltagsbedingungen erleichtern. Erstmalig demonstrieren wir dies im Inhouse-Mentoring-Ansatz.
Abstract
Objectives To demonstrate the applicability of structured implementation of robotic assisted surgery (RAS) and to evaluate a modular training procedure during the implementation phase in in-house mentoring.
Method Execution of a self-defined PDCA (PDCA: Plan–Do–Check–Act) implementation cycle accompanied by prospective data collection of patient characteristics, operation times, complications, conversion rates and postoperative length of stay of a modularly defined training operation (robotic assisted rectosigmoid resection – RARSR).
Results Evaluation of 100 consecutive cases distributed among 3 trainees and an in-house mentor as internal control group. Presentation of qualitatively safe and successful implementation with a short learning curve of the training operation with balanced patient characteristics.
Conclusions Structured implementation enables the safe introduction of RAS in visceral surgery. In this context, modular training operations can facilitate the adoption of RAS by users under everyday conditions. For the first time, we demonstrate this within an in-house mentoring approach.
Publication History
Received: 14 May 2021
Accepted after revision: 13 July 2021
Article published online:
04 October 2021
© 2021. Thieme. All rights reserved.
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
Literatur
- 1 IS. Q2 2020 Intuitive Investor Presentation. 2020 Im Internet (Stand: 10.08.2020): https://isrg.intuitive.com/
- 2 Brunner M, Matzel K, Aladashvili A. et al. Initiating a Robotic Program for Abdominal Surgery – Experiences from a Centre in Germany. Zentralbl Chir 2019; 144: 224-234
- 3 Panteleimonitis S, Popeskou S, Aradaib M. et al. Implementation of robotic rectal surgery training programme: importance of standardisation and structured training. Langenbecks Arch Surg 2018; 403: 749-760
- 4 Vetter MH, Green I, Martino M. et al. Incorporating resident/fellow training into a robotic surgery program. J Surg Oncol 2015; 112: 684-689
- 5 Asklid D, Gerjy R, Hjern F. et al. Robotic vs laparoscopic rectal tumour surgery: a cohort study. Colorectal Dis 2019; 21: 191-199
- 6 Bhama AR, Obias V, Welch KB. et al. A comparison of laparoscopic and robotic colorectal surgery outcomes using the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database. Surg Endosc 2016; 30: 1576-1584
- 7 Jayne D, Pigazzi A, Marshall H. et al. Effect of Robotic-Assisted vs Conventional Laparoscopic Surgery on Risk of Conversion to Open Laparotomy Among Patients Undergoing Resection for Rectal Cancer: The ROLARR Randomized Clinical Trial. JAMA 2017; 318: 1569-1580
- 8 Maciel V, Lujan HJ, Plasencia G. et al. Diverticular disease complicated with colovesical fistula: laparoscopic versus robotic management. Int Surg 2014; 99: 203-210
- 9 Ose I, Perdawood SK. F48. Implementation of transanal total mesorectal excision in Denmark: short-term outcome compared to open, conventional laparoscopic and robot-assisted procedures. Colorectal Dis 2019; 21: 6-18
- 10 Phan K, Kahlaee HR, Kim SH. et al. Laparoscopic vs. robotic rectal cancer surgery and the effect on conversion rates: a meta-analysis of randomized controlled trials and propensity-score-matched studies. Tech Coloproctol 2019; 23: 221-230
- 11 Tam MS, Kaoutzanis C, Mullard AJ. et al. A population-based study comparing laparoscopic and robotic outcomes in colorectal surgery. Surg Endosc 2016; 30: 455-463
- 12 Broholm M, Pommergaard HC, Gogenur I. Possible benefits of robot-assisted rectal cancer surgery regarding urological and sexual dysfunction: a systematic review and meta-analysis. Colorectal Dis 2015; 17: 375-381
- 13 Galata C, Vassilev G, Haas F. et al. Clinical, oncological, and functional outcomes of Da Vinci (Xi)-assisted versus conventional laparoscopic resection for rectal cancer: a prospective, controlled cohort study of 51 consecutive cases. Int J Colorectal Dis 2019; 34: 1907-1914
- 14 Kang J, Yoon KJ, Min BS. et al. The impact of robotic surgery for mid and low rectal cancer: a case-matched analysis of a 3-arm comparison--open, laparoscopic, and robotic surgery. Ann Surg 2013; 257: 95-101
- 15 Jonsdottir GM, Jorgensen S, Cohen SL. et al. Increasing minimally invasive hysterectomy: effect on cost and complications. Obstet Gynecol 2011; 117: 1142-1149
- 16 Luciano AA, Luciano DE, Gabbert J. et al. The impact of robotics on the mode of benign hysterectomy and clinical outcomes. Int J Med Robot 2016; 12: 114-124
- 17 Alleblas CCJ, de Man AM, van den Haak L. et al. Prevalence of Musculoskeletal Disorders Among Surgeons Performing Minimally Invasive Surgery: A Systematic Review. Ann Surg 2017; 266: 905-920
- 18 Cass GK, Vyas S, Akande V. Prolonged laparoscopic surgery is associated with an increased risk of vertebral disc prolapse. J Obstet Gynaecol 2014; 34: 74-78
- 19 Coleman MG, Hanna GB, Kennedy R. et al. The National Training Programme for Laparoscopic Colorectal Surgery in England: a new training paradigm. Colorectal Dis 2011; 13: 614-616
- 20 Miskovic D, Ahmed J, Bissett-Amess R. et al. European consensus on the standardization of robotic total mesorectal excision for rectal cancer. Colorectal Dis 2019; 21: 270-276
- 21 Hemandas A, Flashman KG, Farrow J. et al. Modular training in laparoscopic colorectal surgery maximizes training opportunities without clinical compromise. World J Surg 2011; 35: 409-414
- 22 Kowalewski KF, Schmidt MW, Proctor T. et al. Skills in minimally invasive and open surgery show limited transferability to robotic surgery: results from a prospective study. Surg Endosc 2018; 32: 1656-1667
- 23 Odermatt M, Ahmed J, Panteleimonitis S. et al. Prior experience in laparoscopic rectal surgery can minimise the learning curve for robotic rectal resections: a cumulative sum analysis. Surg Endosc 2017; 31: 4067-4076
- 24 Jimenez-Rodriguez RM, Rubio-Dorado-Manzanares M, Diaz-Pavon JM. et al. Learning curve in robotic rectal cancer surgery: current state of affairs. Int J Colorectal Dis 2016; 31: 1807-1815