Synthesis, Inhaltsverzeichnis Synthesis 2021; 53(24): 4654-4661DOI: 10.1055/a-1558-7457 paper A Domino Approach for the Synthesis of 4-Carboxamide Oxazolines from Azirines Ali Nikbakht a Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran , Fariba Mohammadi a Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran , Mohammad Sadeq Mousavi a Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran , Kamran Amiri a Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran , Saeed Balalaie ∗ a Peptide Chemistry Research Institute, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran b Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran , Frank Rominger c Organisch-Chemisches Institut der Universität Heidelberg, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany , Hamid Reza Bijanzadeh d Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Tehran, Iran › Institutsangaben Artikel empfehlen Abstract Artikel einzeln kaufen Alle Artikel dieser Rubrik Abstract A regio- and diastereoselective ring-expansion reaction of N-acylaziridines is described for the synthesis of 4-carboxamide oxazolines using InCl3. A domino Ugi–Joullié/ring-expansion reaction of arylphenylazirines, isocyanides, and carboxylic acids leads to the target products through the N-acylaziridine intermediates in the presence of the indium catalyst. The oxazolines were synthesized in moderate to excellent yields with high atom economy and high bond-forming efficiency under mild reaction conditions. Key words Key wordsdomino approach - 4-carboxamide oxazolines - azirines Volltext Referenzen References For selected reviews on ring-expansion reactions, see: 1a Garayalde D, Nevado C. Beilstein J. Org. Chem. 2011; 7: 767 1b Donald JR, Unsworth WP. Chem. Eur. J. 2017; 23: 8780 1c Davies HM. L, Denton JR. Chem. Soc. Rev. 2009; 38: 3061 1d Cavitt MA, Phun LH, France S. Chem. Soc. Rev. 2014; 43: 804 For recent selected reports, see: 1e Mal A, Goswami G, Wani IA, Ghorai MK. Chem. Commun. 2017; 53: 10263 1f Sayyad M, Wani IA, Babu R, Nanaji Y, Ghorai MK. J. Org. Chem. 2017; 82: 2364 For selected reviews on ring-expansion reactions of aziridines and 2H-azirines, see: 2a Padwa A, Carlsen PH. J. Nitrile Ylides and Nitrenes from 2H-Azirines . In Reactive Intermediates Vol. 2 . Abramovitch RA. Springer; Boston, MA: 1982: 55 2b Palacios F, Ochoa de Retana AM. Eur. J. Org. Chem. 2001; 2401 2c Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045 2d Singh GS, Sudheesh S, Keroletswe N. ARKIVOC 2018; (i): 50 2e Piens N, D’hooghe M. Eur. J. Org. Chem. 2017; 5943 2f Pankova AS, Kuznetsov MA. Synthesis 2017; 49: 5093 2g Ghorai MK, Bhattacharyya A, Das S, Chauhan N. Top. Heterocycl. Chem. 2016; 41: 49 2h Khlebnikov AF, Novikov MS. Top. Heterocycl. Chem. 2016; 41: 143 2i Huang C.-Y, Doyle AG. Chem. Rev. 2014; 114: 8153 2j Loy NS. Y, Singh A, Xu X, Park C.-M. Angew. Chem. Int. Ed. 2013; 52: 2212 2k Ohno H. Chem. Rev. 2014; 114: 7784 2l Khlebnikov AF, Novikov MS, Rostovskii NV. Tetrahedron 2019; 75: 2555 2m Xuan J, He X.-K, Xiao W.-J. Chem. Soc. Rev. 2020; 49: 2546 Synthesis of pyrazines: 3a Palacios F, Ochoa de Retana AM, Gil JI, Lopez de Munain R. Org. Lett. 2002; 4: 2405 3b Loy NS. Y, Kim S, Park CM. Org. Lett. 2015; 17: 395 3c Ding H, Wang Z, Bai S, Lu P, Wang Y. Org. Lett. 2017; 19: 6514 3d Baek Y, Maeng C, Kim H, Lee PH. J. Org. Chem. 2018; 83: 2349 3e Ruvinskaya JO, Rostovskii NV, Filippov IP, Khlebnikov AF, Novikov MS. Org. Biomol. Chem. 2018; 16: 38 Pyridines: 4a Ref. 2j. 4b Jiang YJ, Park C.-M, Loh T.-P. Org. Lett. 2014; 16: 3432 4c Sujatha C, Bhatt CS, Ravva MK, Suresh AK, Namitharan K. Org. Lett. 2018; 20: 3241 For recent selected reports on the synthesis of pyrroles, see: 5a Khlebnikov AF, Golovkina MV, Novikov MS, Yufit DS. Org. Lett. 2012; 14: 3768 5b Xuan J, Xia X.-D, Zeng T.-T, Feng Z.-J, Chen J.-R, Lu L.-Q, Xiao W.-J. Angew. Chem. Int. Ed. 2014; 53: 5653 5c Li T, Yan H, Li X, Wang C, Wan B. J. Org. Chem. 2016; 81: 12031 5d del Burgo AV, Ochoa de Retana AM, de los Santos JM, Palacios F. J. Org. Chem. 2016; 81: 100 5e Zhao MN, Ren ZH, Yang DS, Guan ZH. Org. Lett. 2018; 20: 1287 Oxazoles: 6a Chen L, Li H, Li P, Wang L. Org. Lett. 2016; 18: 3646 6b Ning Y, Otani Y, Ohwada T. J. Org. Chem. 2017; 82: 6313 7 Li T, Xu F, Li X, Wang C, Wan B. Angew. Chem. Int. Ed. 2016; 55: 2861 8a Shi S, Xu K, Jiang C, Ding Z. J. Org. Chem. 2018; 83: 14791 8b Cardoso AL, Lemos A, Pinho e Melo TM. V. D. Eur. J. Org. Chem. 2014; 5159 9 Lei W.-L, Wang T, Feng K.-W, Wu L.-Z, Liu Q. ACS Catal. 2017; 7: 7941 10a Deiters A, Martin SF. Chem. Rev. 2004; 104: 2199 10b Tsuda M, Yamakawa M, Oka S, Tanaka Y, Hoshino Y, Mikami Y, Sato A, Fujiwara H, Ohizumi Y, Kobayashi J, Brasilibactin A. J. Nat. Prod. 2005; 68: 462 10c Horton DA, Bourne GT, Smythe ML. Chem. Rev. 2003; 103: 893 10d Bergeron RJ, Xin MG, Weimar WR, Smith RE, Wiegand J. J. Med. Chem. 2001; 44: 2469 10e Thiede S, Wosniok PR, Herkommer D, Schulz-Fincke A.-C, Gütschow M, Menche D. Org. Lett. 2016; 18: 3964 10f Franchino A, Jakubec P, Dixon DJ. Org. Biomol. Chem. 2016; 14: 93 10g Moraski GC, Chang M, Villegas-Estrada A, Franzblau SG, Möllmann U, Miller MJ. Eur. J. Med. Chem. 2010; 45: 1703 10h You S.-L, Kelly JW. Chem. Eur. J. 2004; 10: 71 11a Miller MJ, Walz AJ, Zhu H, Wu C, Moraski G, Möllmann U, Tristani EM, Crumbliss AL, Ferdig MT, Checkley L, Edwards RL. J. Am. Chem. Soc. 2011; 133: 2076 11b Bergeron RJ, Bharti N, Singh S. Synthesis 2007; 1033 11c Pirrung MC, Tumey LN, Raetz CR, Jackman JE, Snehalatha K, McClerren AL, Fierke CA, Gantt SL, Rusche KM. J. Med. Chem. 2002; 45: 4359 11d Keating TA, Marshall CG, Walsh CT. Biochemistry 2000; 39: 15522 11e Sakakura A, Umemura S, Kondo R, Ishihara K. Adv. Synth. Catal. 2007; 349: 551 11f McDonald LA, Ireland CM. J. Nat. Prod. 1992; 55: 376 12a Chavan SS, Rupanawar BD, Kamble RB, Shelke AM. Org. Chem. Front. 2018; 5: 544 12b Trose M, Lazreg F, Lesieur M, Cazin CS. J. Org. Chem. 2015; 80: 9910 12c Gao W.-C, Hu F, Huo Y.-M, Chang H.-H, Li X, Wei W.-L. Org. Lett. 2015; 17: 3914 12d Rajaram S, Sigman MS. Org. Lett. 2002; 4: 3399 12e Phillips AJ, Uto Y, Wipf P, Reno MJ, Williams DR. Org. Lett. 2000; 2: 1165 13a Gant TG, Meyers AI. Tetrahedron 1994; 50: 2297 ; and references cited therein 13b Nishimura M, Minakata S, Takahashi T, Oderaotoshi Y, Komatsu M. J. Org. Chem. 2002; 67: 2101 14 Wang H, Zhang J, Tan J, Xin L, Li Y, Zhang S, Xu K. Org. Lett. 2018; 20: 2505 15 Bellotti P, Brocus J, El Orf F, Selkti M, König B, Belmont P. J. Org. Chem. 2019; 84: 6278 16 Wipf P, Miller CP. Tetrahedron Lett. 1992; 33: 907 17a Al Mehedi MS, Tepe JJ. J. Org. Chem. 2019; 84: 7219 17b Punk M, Merkley C, Kennedy K, Morgan JB. ACS Catal. 2016; 6: 4694 17c Samimi HA, Yamin BM, Saberi F. Synthesis 2015; 47: 129 17d Samimi HA, Shams Z. J. Iran. Chem. Soc. 2014; 11: 979 17e Tomasini C, Vecchione A. Org. Lett. 1999; 1: 2153 18a Domino Reactions . Tietze LF. Wiley-VCH; Weinheim: 2014 18b Dömling A, Wang W, Wang K. Chem. Rev. 2012; 112: 3083 18c Sharma UK, Sharma N, Vachhani DD, Van der Eycken EV. Chem. Soc. Rev. 2015; 44: 1836 18d Dömling A. Chem. Rev. 2006; 106: 17 18e Bariwal J, Kaur R, Voskressensky LG, Van der Eycken EV. Front. Chem. 2018; 6: 557 18f D’Souza DM, Müller TJ. J. Chem. Soc. Rev. 2007; 36: 1095 18g Synthesis of Heterocycles via Multicomponent Reactions I . Orru RV. A, Ruijter E. Springer Science & Business Media; Berlin: 2010 18h Rotstein BH, Zaretsky S, Rai V, Yudin AK. Chem. Rev. 2014; 114: 8323 18i Cheng G, He X, Tian L, Chen J, Li C, Jia X, Li J. J. Org. Chem. 2015; 80: 11100 18j Polindara-García LA, Juaristi E. Eur. J. Org. Chem. 2016; 1095 19a Balalaie S, Mirzaie S, Nikbakht A, Hamdan F, Rominger F, Navari R, Bijanzadeh HR. Org. Lett. 2017; 19: 6124 19b Balalaie S, Shamakli M, Nikbakht A, Sadeghi Alavijeh N, Rominger F, Rostamizadeh S, Bijanzadeh HR. Org. Biomol. Chem. 2017; 15: 5737 19c Balalaie S, Ramezani Kejani R, Ghabraie E, Darvish F, Rominger F, Hamdan F, Bijanzadeh HR. J. Org. Chem. 2017; 82: 12141 19d Ghabraie E, Balalaie S, Mehrparvar S, Rominger F. J. Org. Chem. 2014; 79: 7926 19e Maghari S, Ramezanpour S, Balalaie S, Darvish F, Rominger F, Bijanzadeh HR. J. Org. Chem. 2013; 78: 6450 19f Janatian Ghazvini H, Müller TJ. J, Rominger F, Balalaie S. J. Org. Chem. 2019; 84: 10740 19g Nikbakht A, Balalaie S, Baghestani F, Rominger F. Synlett 2018; 29: 1892 19h Zahedian Tejeneki H, Nikbakht A, Balalaie S, Rominger F. J. Org. Chem. 2020; 85: 8544 19i Golmohammadi F, Balalaie S, Fathi Vavsari V, Anwar MU, Al-Harrasi A. J. Org. Chem. 2020; 85: 13141 19j Amiri K, Khosravi H, Balalaie S, Golmohammadi F, Anwar MU, Al-Harrasi A. Org. Biomol. Chem. 2019; 17: 8858 19k Amiri K, Balalaie S, Anwar MU, Al-Harrasi A. Synlett 2020; 31: 861 20 CCDC 2004935 (5b) contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures. 21 Zha M.-N, Guan Z.-H. Org. Synth. 2019; 96: 66 Zusatzmaterial Zusatzmaterial Supporting Information