ZWR - Das Deutsche Zahnärzteblatt 2021; 130(09): 404-412
DOI: 10.1055/a-1576-9549
Fortbildung

Sind Zirkonoxidimplantate eine gute biologische Alternative zu Titanimplantaten?

Daniel Gustavo Olmedo
,
Elisabeth Jacobi-Gresser

Aufgrund der weit verbreiteten Verwendung von metallischen Biomaterialien in Bereichen wie Orthopädie und Zahnmedizin könnte die Oberfläche von Implantaten durch die Freisetzung von Partikeln eine potenzielle Quelle für systemische Kontamination sein [1] [2] [3]. Kein Metall und keine Metalllegierung verhält sich in vivo völlig inert [4].



Publication History

Article published online:
16 September 2021

© 2021. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • Literatur

  • 1 Jacobs JJ, Gilbert JL, Urban RM. Corrosion of metal orthopaedic implants. J Bone Joint Surg Am 1998; 80: 268-282
  • 2 Flatebø RS, Johannessen AC, Grønningsaeter AG. et al. Host response to titanium dental implant placement evaluated in a human oral model. J Periodontol 2006; 77: 1201-1210
  • 3 Revell PA. The biological effects of nanoparticles. Nanotechnol Percept 2006; 2: 283-298
  • 4 Guglielmotti MB, Olmedo DG, Cabrini RL. Research on implants and osseointegration. Periodontol 2000 2019; 79: 178-189
  • 5 Cunningham BW, Orbegoso CM, Dmitriev AE. et al. The effect of titanium particulate on development and maintenance of a posterolateral spinal arthrodesis: an in vivo rabbit model. Spine (Phila Pa 1976) 2002; 27: 1971-1981
  • 6 Revathi A, Borrás AD, Muñoz AI. et al. Degradation mechanisms and future challenges of titanium and its alloys for dental implant applications in oral environment. Mater Sci Eng C 2017; 76: 1354-1368
  • 7 Delgado-Ruiz R, Romanos G. Potential Causes of Titanium Particle and Ion Release in Implant Dentistry: A Systematic Review. Int J Mol Sci 2018; 19: 3585
  • 8 Zhou ZR, Zheng J. Tribology of dental materials: a review. J Phys D: Appl Phys 2008; 41: 113001
  • 9 Mathew MT, Srinivasa Pai P, Pourzal R. et al. Significance of Tribocorrosion in Biomedical Applications: Overview and Current Status. Adv Tribol 2009;
  • 10 Mathew MT, Kerwell S, Lundberg HJ. et al. Tribocorrosion and oral and maxillofacial surgical devices. Br J Oral Maxillofac Surg 2014; 52: 396-400
  • 11 Tasat DR, Domingo MG, Bruno ME. et al. Titanium Nanoparticle Size Influences Trace Concentration Levels in Skin Appendages. Toxicol Pathol 2017; 45: 624-632
  • 12 Noronha Oliveira M, Schunemann WVH, Mathew MT. et al. Can degradation products released from dental implants affect peri-implant tissues?. J Periodontal Res 2018; 53: 1-11
  • 13 Fretwurst T, Nelson K, Tarnow DP. et al. Is Metal Particle Release Associated with Peri-implant Bone Destruction? An Emerging Concept. J Dent Res 2018; 97: 259-265
  • 14 Franchi M, Bacchelli B, Martini D. et al. Early detachment of titanium particles from various different surfaces of endosseous dental implants. Biomaterials 2004; 25: 2239-2246
  • 15 Cruz HJ, Souza JCM, Henriques M, Rocha LA. Tribocorrosion and Bio-Tribocorrosion in the oral Environment: the Case of dental Implants. In: Paulo Davim J. Biomedical Tribology. New York: Nova Science Publishers Inc; 2011: 1-33
  • 16 Suárez-López Del Amo F, Garaicoa-Pazmiño C, Fretwurst T. et al. Dental implants-associated release of titanium particles: A systematic review. Clin Oral Implants Res 2018; 29: 1085-1100
  • 17 Olmedo D, Fernández MM, Guglielmotti MB. et al. Macrophages related to dental implant failure. Implant Dent 2003; 12: 75-80
  • 18 Juanito GMP, Morsch CS, Benfatti CA. et al. Effect of Fluoride and Bleaching Agents on the Degradation of Titanium: Literature Review. Dentistry 2015; 5: 273
  • 19 Mouhyi J, Dohan Ehrenfest DM, Albrektsson T. The peri-implantitis: implant surfaces, microstructure, and physicochemical aspects. Clin Implant Dent Relat Res 2012; 14: 170-183
  • 20 Souza JC, Henriques M, Oliveira R. et al. Do oral biofilms influence the wear and corrosion behavior of titanium?. Biofouling 2010; 26: 471-478
  • 21 Mombelli A, Hashim D, Cionca N. What is the impact of titanium particles and biocorrosion on implant survival and complications? A critical review. Clin Oral Implants Res 2018; 29 (Suppl. 18) 37-53
  • 22 Wilson TG, Valderrama P, Burbano M. et al. Foreign bodies associated with peri-implantitis human biopsies. J Periodontol 2015; 86: 9-15
  • 23 Olmedo DG, Paparella ML, Spielberg M. et al. Oral mucosa tissue response to titanium cover screws. J Periodontol 2012; 83: 973-980
  • 24 Olmedo DG, Nalli G, Verdú S. et al. Exfoliative cytology and titanium dental implants: a pilot study. J Periodontol 2013; 84: 78-83
  • 25 Olmedo DG, Paparella ML, Brandizzi D. et al. Reactive lesions of peri-implant mucosa associated with titanium dental implants: a report of 2 cases. Int J Oral Maxillofac Surg 2010; 39: 503-507
  • 26 Paparella ML, Domingo MG, Puia SA. et al. Titanium dental implant-related pathologies: A retrospective histopathological study. Oral Dis 2021;
  • 27 Olmedo DG, Tasat D, Guglielmotti MB. et al. Titanium transport through the blood stream. An experimental study on rats. J Mater Sci Mater Med 2003; 14: 1099-1103
  • 28 Olmedo DG, Tasat DR, Guglielmotti MB. et al. Effect of titanium dioxide on the oxidative metabolism of alveolar macrophages: an experimental study in rats. J Biomed Mater Res A 2005; 73: 142-149
  • 29 Olmedo DG, Tasat DR, Evelson P. et al. Biological response of tissues with macrophagic activity to titanium dioxide. J Biomed Mater Res A 2008; 84: 1087-1093
  • 30 Bruno ME, Tasat DR, Ramos E. et al. Impact through time of different sized titanium dioxide particles on biochemical and histopathological parameters. J Biomed Mater Res A 2014; 102: 1439-1448
  • 31 Olmedo DG, Tasat DR, Evelson P. et al. In vivo comparative biokinetics and biocompatibility of titanium and zirconium microparticles. J Biomed Mater Res A 2011; 98: 604-613
  • 32 Sicilia A, Cuesta S, Coma G. et al. Titanium allergy in dental implant patients: a clinical study on 1500 consecutive patients. Clin Oral Implants Res 2008; 19: 823-835
  • 33 Jacobi-Gresser E, Huesker K, Schütt S. Genetic and immunological markers predict titanium implant failure: a retrospective study. Int J Oral Maxillofac Surg 2013; 42: 537-543
  • 34 McGuff HS, Heim-Hall J, Holsinger FC. et al. Maxillary osteosarcoma associated with a dental implant: report of a case and review of the literature regarding implant-related sarcomas. J Am Dent Assoc 2008; 139: 1052-1059
  • 35 Poggio CE. Plasmacytoma of the mandible associated with a dental implant failure: a clinical report. Clin Oral Implants Res 2007; 18: 540-543
  • 36 Gallego L, Junquera L, Baladrón J. et al. Oral squamous cell carcinoma associated with symphyseal dental implants: an unusual case report. J Am Dent Assoc 2008; 139: 1061-1065
  • 37 Kotsakis GA, Olmedo DG. Peri-implantitis is not periodontitis: Scientific discoveries shed light on microbiome-biomaterial interactions that may determine disease phenotype. Periodontol 2000 2021; 86: 231-240
  • 38 Daubert D, Pozhitkov A, McLean J. et al. Titanium as a modifier of the peri-implant microbiome structure. Clin Implant Dent Relat Res 2018; 20: 945-953
  • 39 Fretwurst T, Buzanich G, Nahles S. et al. Metal elements in tissue with dental peri-implantitis: a pilot study. Clin Oral Implants Res 2016; 27: 1178-1186
  • 40 Safioti LM, Kotsakis GA, Pozhitkov AE. et al. Increased Levels of Dissolved Titanium are Associated with Peri-Implantitis – A Cross-Sectional Study. J Periodontol 2017; 88: 436-442
  • 41 Houshmand A, Donkiewicz P, Smeets R. et al. Incidental finding of a degrading zirconia dental implant 29 months after implantation: Histological and histomorphometrical analysis. J Biomed Mater Res B Appl Biomater 2018; 106: 2919-2923
  • 42 Hashim D, Cionca N, Courvoisier DS. et al. A systematic review of the clinical survival of zirconia implants. Clin Oral Investig 2016; 20: 1403-1417
  • 43 Roehling S, Astasov-Frauenhoffer M, Hauser-Gerspach I. et al. In Vitro Biofilm Formation On Titanium And Zirconia Implant Surfaces. J Periodontol 2016;
  • 44 Sivaraman K, Chopra A, Narayan AI. et al. Is zirconia a viable alternative to titanium for oral implant? A critical review. J Prosthodont Res 2018; 62: 121-133
  • 45 Cionca N, Hashim D, Mombelli A. Zirconia dental implants: where are we now, and where are we heading?. Periodontol 2000 2017; 73: 241-258
  • 46 Pieralli S, Kohal RJ, Jung RE. et al. Clinical Outcomes of Zirconia Dental Implants: A Systematic Review. J Dent Res 2017; 96: 38-46
  • 47 Spies BC, Fross A, Adolfsson E. et al. Stability and aging resistance of a zirconia oral implant using a carbon fiber-reinforced screw for implant-abutment connection. Dent Mater 2018; 34: 1585-1595
  • 48 Jacobi Gresser E, Domingo M, Tasat D. et al. Oral mucosa response to zirconia dental implants. A pilot study. J Dent Res 2018; 97: 0958
  • 49 Jacobi-Gresser E, Domingo MG, Renou SJ. et al. Tissue Response to Zirconia Dental Implants. A Murine Experimental Study. J Dent Res 2020; 99: 3464
  • 50 Neethling WM, Glancy R, Hodge AJ. Mitigation of calcification and cytotoxicity of a glutaraldehyde-preserved bovine pericardial matrix: improved biocompatibility after extended implantation in the subcutaneous rat model. J Heart Valve Dis 2010; 19: 778-785
  • 51 Sarkanen JR, Ruusuvuori P, Kuokkanen H. et al. Bioactive acellular implant induces angiogenesis and adipogenesis and sustained soft tissue restoration in vivo. Tissue Eng Part A 2012; 18: 2568-2580
  • 52 Rennert RC, Sorkin M, Garg RK. et al. Cellular response to a novel fetal acellular collagen matrix: implications for tissue regeneration. Int J Biomater 2013; 2013: 527957
  • 53 Modulevsky DJ, Cuerrier CM, Pelling AE. Biocompatibility of subcutaneously implanted plant-derived cellulose biomaterials. PLoS One 2016; 11: e0157894
  • 54 He X, Reichl FX, Milz S. et al. Titanium and zirconium release from titanium- and zirconia implants in mini pig maxillae and their toxicity in vitro. Dent Mater 2020; 36: 402-412
  • 55 Gross C, Bergfeldt T, Fretwurst T. et al. Elemental analysis of commercial zirconia dental implants – Is “metal-free” devoid of metals?. J Mech Behav Biomed Mater 2020; 107: 103759