Subscribe to RSS
DOI: 10.1055/a-1577-5947
Recent Advances in Light-Driven Carbon–Carbon Bond Formation via Carbon Dioxide Activation
This work was supported by the Asahi Glass Foundation (Step-up-grant to S.S.), Scientific Research (B) (19H02713 to S.S.) and Early-Career Scientists (no. 21K14642 to J. J.) from JSPS, and partially by the grant of Joint Research by the National Institutes of Natural Sciences (NINS) (NINS program No. 01112104 to S.S.).
Abstract
Carbon dioxide (CO2) is an attractive renewable one-carbon (C1) feedstock in terms of its earth abundance, low cost, and non-toxicity. Developing new catalytic systems to realize the practical insertion of CO2 into organic molecules has been of great importance for ecological economics. In recent years, outstanding improvements have been carried out in the field of light-driven catalytic carboxylation via the activation of CO2 as the key reagent. In this short review, the recent developments of light-promoted carboxylation utilizing CO2 to synthesize value-added chemicals using a dual visible-light photoredox/transition-metal catalyst or a photoredox catalyst are highlighted.
1 Introduction
2 Visible-Light-Driven Carboxylation Using Transition-Metal Photocatalysts
2.1 Transition-Metal-Catalyzed Carboxylation of Alkenes
2.2 Transition-Metal-Catalyzed Carboxylation of C(sp2)–X (X = Cl, Br, OTf) Bonds
2.3 Transition-Metal-Catalyzed Carboxylation of Alkynes
2.4 Transition-Metal-Catalyzed Carboxylation of Carbons Attached to Nitrogen
3 Light-Driven Carboxylation via Organo-Photocatalysis
3.1 Photocatalytic Carboxylation of Alkenes
3.2 Photocatalytic Carboxylation of C(sp3)–H Bonds
4 Conclusion
Key words
carbon dioxide - photochemistry - carbon–carbon bond formation - photocatalysis - carboxylationPublication History
Received: 22 May 2021
Accepted after revision: 03 August 2021
Accepted Manuscript online:
03 August 2021
Article published online:
12 August 2021
© 2021. Thieme. All rights reserved
Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany
-
References
- 1 von der Assen N, Voll P, Peters M, Bardow A. Chem. Soc. Rev. 2014; 43: 7982
- 2a Zhang Z, Ju T, Ye J.-H, Yu D.-G. Synlett 2017; 28: 741
- 2b Tortajada A, Juliá-Hernández F, Börjesson M, Moragas T, Martin R. Angew. Chem. Int. Ed. 2018; 57: 15948
- 2c Zhang Z, Ye J.-H, Wu D.-S, Zhou Y.-Q, Yu D.-G. Chem. Asian J. 2018; 13: 2292
- 2d Peshkov VA, Pereshivko OP, Nechaev AA, Peshkov AA, Van der Eycken EV. Chem. Soc. Rev. 2018; 47: 3861
- 3a Wang W.-H, Himeda Y, Muckerman JT, Manbeck GF, Fujita E. Chem. Rev. 2015; 115: 12936
- 3b Kamada K, Jung J, Wakabayashi T, Sekizawa K, Sato S, Morikawa T, Fukuzumi S, Saito S. J. Am. Chem. Soc. 2020; 142: 10261
- 4a Huang K, Sun C.-L, Shi Z.-J. Chem. Soc. Rev. 2011; 40: 2435
- 4b Ishida N, Shimamoto Y, Murakami M. Angew. Chem. Int. Ed. 2012; 51: 11750
- 4c Börjesson M, Moragas T, Gallego D, Martin R. ACS Catal. 2016; 6: 6739
- 5 Correa A, Martin R. Angew. Chem. Int. Ed. 2009; 48: 6201
- 6a Liu Q, Wu L, Jackstell R, Beller M. Nat. Commun. 2015; 6: 5933
- 6b Charboneau DJ, Brudvig GW, Hazari N, Lant HM. C, Saydjari AK. ACS Catal. 2019; 9: 3228
- 6c Chen X.-W, Yue J.-P, Wang K, Gui Y.-Y, Niu Y.-N, Liu J, Ran C.-K, Kong W, Zhou W.-J, Yu D.-G. Angew. Chem. Int. Ed. 2021; 60: 14075
- 7a Liu Q, Wu L.-Z. Natl. Sci. Rev. 2017; 4: 359
- 7b Jiang H, Studer A. CCS Chem. 2019; 1: 38
- 7c Cheng W.-M, Shang R. ACS Catal. 2020; 10: 9170
- 8a Hou J, Li J.-S, Wu J. Asian J. Org. Chem. 2018; 7: 1439
- 8b Tan F, Yin G. Chin. J. Chem. 2018; 36: 545
- 8c Yeung CS. Angew. Chem. Int. Ed. 2019; 58: 5492
- 9a Zhang Z, Ye J.-H, Ju T, Liao L.-L, Huang H, Gui Y.-Y, Zhou W.-J, Yu D.-G. ACS Catal. 2020; 10: 10871
- 9b Fan Z, Zhang Z, Xi C. ChemSusChem 2020; 13: 6201
- 9c He X, Qiu L.-Q, Wang W.-J, Chen K.-H, He L.-N. Green Chem. 2020; 22: 7301
- 9d Feng L, Li X, Liu B, Vessally E. J. CO2 Util. 2020; 40: 101220
- 9e Reimer D, Das S. Photocatalysis as a Powerful Tool for the Utilization of CO2 in Organic Synthesis. CO2 as a Building Block in Organic Synthesis. Das S. Wiley-VCH; Weinheim: 2020
- 9f Zhang G, Cheng Y, Beller M, Chen F. Adv. Synth. Catal. 2021; 363: 1583
- 9g Pradhan S, Roy S, Sahoo B, Chatterjee I. Chem. Eur. J. 2021; 27: 2254
- 10a Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
- 10b Tellis JC, Kelly CB, Primer DN, Jouffroy M, Patel NR, Molander GA. Acc. Chem. Res. 2016; 49: 1429
- 10c Parasram M, Gevorgyan V. Chem. Soc. Rev. 2017; 46: 6227
- 10d Zhou W.-J, Zhang Y.-H, Gui Y.-Y, Sun L, Yu D.-G. Synthesis 2018; 50: 3359
- 10e Zhu C, Zhang Y.-F, Liu Z.-Y, Zhou L, Liu H, Feng C. Chem. Sci. 2019; 10: 6721
- 11a Murata K, Numasawa N, Shimomaki K, Takaya J, Iwasawa N. Chem. Commun. 2017; 53: 3098
- 11b Murata K, Numasawa N, Shimomaki K, Takaya J, Iwasawa N. Front. Chem. 2019; 7: 371
- 12a Mizuno H, Takaya J, Iwasawa N. J. Am. Chem. Soc. 2011; 133: 1251
- 12b Suga T, Mizuno H, Takaya J, Iwasawa N. Chem. Commun. 2014; 50: 14360
- 13 Wang H, Gao Y, Zhuo C, Li G. J. Am. Chem. Soc. 2020; 142: 8122
- 14 Shimomaki K, Murata K, Martin R, Iwasawa N. J. Am. Chem. Soc. 2017; 139: 9467
- 15a Tanaka D, Romeril SP, Myers AG. J. Am. Chem. Soc. 2005; 127: 10323
- 15b Dickstein JS, Mulrooney CA, O’Brien EM, Morgan BJ, Kozlowski MC. Org. Lett. 2007; 9: 2441
- 15c Shang R, Xu Q, Jiang YY, Wang Y, Liu L. Org. Lett. 2010; 12: 1000
- 16a Meng Q.-Y, Wang S, König B. Angew. Chem. Int. Ed. 2017; 56: 13426
- 16b Sahoo B, Bellotti P, Juliá-Hernández F, Meng Q.-Y, Crespi S, König B, Martin R. Chem. Eur. J. 2019; 25: 9001
- 17a Shimomaki K, Nakajima T, Caner J, Toriumi N, Iwasawa N. Org. Lett. 2019; 21: 4486
- 17b Bhunia SK, Das P, Nandi S, Jana R. Org. Lett. 2019; 21: 4632
- 19 Hou J, Ee A, Feng W, Xu J.-H, Zhao Y, Wu J. J. Am. Chem. Soc. 2018; 140: 5257
- 20a Tsuda T, Kunisada K, Nagahama N, Morikawa S, Saegusa T. Synth. Commun. 1989; 19: 1575
- 20b Louie J, Gibby JE, Farnworth MV, Tekavec TN. J. Am. Chem. Soc. 2002; 124: 15188
- 20c Oliveros-Cruz S, Arevalo A, García JJ. J. Organomet. Chem. 2017; 831: 18
- 21a Arai T, Sakuragi H, Tokumaru K. Chem. Lett. 1980; 9: 261
- 21b Arai T, Sakuragi H, Tokumaru K. Bull. Chem. Soc. Jpn. 1982; 55: 2204
- 22 Fan X, Gong X, Ma M, Wang R, Walsh PJ. Nat. Commun. 2018; 9: 4936
- 23a Humbel S, Côte I, Hoffmann N, Bouquant J. J. Am. Chem. Soc. 1999; 121: 5507
- 23b Hager D, MacMillan DW. J. Am. Chem. Soc. 2014; 136: 16986
- 23c Ju T, Fu Q, Ye J.-H, Zhang Z, Liao L.-L, Yan S.-S, Tian X.-Y, Luo S.-P, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2018; 57: 13897
- 24a Liao L.-L, Cao G.-M, Ye J.-H, Sun G.-Q, Zhou W.-J, Gui Y.-Y, Yan S.-S, Shen G, Yu D.-G. J. Am. Chem. Soc. 2018; 140: 17338
- 24b Cao G.-M, Hu X.-L, Liao L.-L, Yan S.-S, Song L, Chruma JJ, Gong L, Yu D.-G. Nat. Commun. 2021; 12: 3306
- 25 Song L, Fu D.-M, Chen L, Jiang Y.-X, Ye J.-H, Zhu L, Lan Y, Fu Q, Yu D.-G. Angew. Chem. Int. Ed. 2020; 59: 21121
- 26 Liao L.-L, Cao G.-M, Jiang Y.-X, Jin X.-H, Hu X.-L, Chruma JJ, Sun G.-Q, Gui Y.-Y, Yu D.-G. J. Am. Chem. Soc. 2021; 143: 2812
- 27 Bagal DB, Kachkovskyi G, Knorn M, Rawner T, Bhanage BM, Reiser O. Angew. Chem. Int. Ed. 2015; 54: 6999
- 28 Stevenson SM, Shores MP, Ferreira EM. Angew. Chem. Int. Ed. 2015; 54: 6506
- 29 Gualandi A, Marchini M, Mengozzi L, Natali M, Lucarini M, Ceroni P, Cozzi PG. ACS Catal. 2015; 5: 5927
- 30a Marin ML, Santos-Juanes L, Arques A, Amat AM, Miranda MA. Chem. Rev. 2012; 112: 1710
- 30b Fukuzumi S, Ohkubo K. Chem. Sci. 2013; 4: 561
- 30c Nicewicz DA, Nguyen TM. ACS Catal. 2014; 4: 355
- 31a Fukuzumi S, Ohkubo K. Org. Biomol. Chem. 2014; 12: 6059
- 31b Vallavoju N, Selvakumar S, Jockusch S, Sibi MP, Sivaguru J. Angew. Chem. Int. Ed. 2014; 53: 5604
- 31c Fabry DC, Ronge MA, Rueping M. Chem. Eur. J. 2015; 21: 5350
- 31d Liu X, Ye X, Bures F, Liu H, Jiang Z. Angew. Chem. Int. Ed. 2015; 54: 11443
- 32a Tazuke S, Ozawa H. J. Chem. Soc., Chem. Commun. 1975; 237
- 32b Tazuke S, Kazama S, Kitamura N. J. Org. Chem. 1986; 51: 4548
- 32c Ito Y, Uozu Y, Matsuura T. J. Chem. Soc., Chem. Commun. 1988; 562
- 32d Nikolaitchik AV, Rodgers MA. J, Neckers DC. J. Org. Chem. 1996; 61: 1065
- 32e Ito Y. Tetrahedron 2007; 63: 3108
- 32f Wang M.-Y, Cao Y, Liu X, Wang N, He L.-N, Lia S.-H. Green Chem. 2017; 19: 1240
- 33a Ogata T, Hiranaga K, Matsuoka S, Wada Y, Yanagida S. Chem. Lett. 1993; 22: 983
- 33b Wada Y, Ogata T, Hiranaga K, Yasuda H, Kitamura T, Murakoshi K, Yanagida S. J. Chem. Soc., Perkin Trans. 2 1998; 1999
- 34a Ravelli D, Fagnoni M, Albini A. Chem. Soc. Rev. 2013; 42: 97
- 34b Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
- 35 Cannalire R, Pelliccia S, Sancineto L, Novellino E, Tron GC, Giustiniano M. Chem. Soc. Rev. 2021; 50: 766
- 36 Yatham VR, Shen Y, Martin R. Angew. Chem. Int. Ed. 2017; 56: 10915
- 37 Seo H, Liu A, Jamison TF. J. Am. Chem. Soc. 2017; 139: 13969
- 38 Meng QY, Wang S, Huff GS, König B. J. Am. Chem. Soc. 2018; 140: 3198
- 39 Uoyama H, Goushi K, Shizu K, Nomura H, Adachi C. Nature 2012; 492: 236
- 40a Tellis JC, Primer DN, Molander GA. Science 2014; 345: 433
- 40b Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
- 40c Johnston CP, Smith RT, Allmendinger S, MacMillan DW. C. Nature 2016; 536: 322
- 41a Klein A, Kaiser A, Sarkar B, Wanner M, Fiedler J. Eur. J. Inorg. Chem. 2007; 965
- 41b Klein A, Budnikova YH, Sinyashin OG. J. Organomet. Chem. 2007; 692: 3156
- 41c Yakhvarov DG, Petr A, Kataev V, Büchner B, Gómez-Ruiz S, Hey-Hawkins E, Kvashennikova SV, Ganushevich YS, Morozov VI, Sinyashin OG. J. Organomet. Chem. 2014; 750: 59
- 42a Aresta M, Nobile CF, Albano VG, Forni E, Manassero M. J. Chem. Soc., Chem. Commun. 1975; 636
- 42b Amatore C, Jutand A. J. Am. Chem. Soc. 1991; 113: 2819
- 43 Greenburg ZR, Jin D, Williard PG, Bernskoetter WH. Dalton Trans. 2014; 43: 15990
- 44 Ye J.-H, Miao M, Huang H, Yan S.-S, Yin Z.-B, Zhou W.-J, Yu D.-G. Angew. Chem. Int. Ed. 2017; 56: 15416
- 45 Hou J, Ee A, Cao H, Ong H.-W, Xu J.-H, Wu J. Angew. Chem. Int. Ed. 2018; 57: 17220
- 46 Fu Q, Bo Z.-Y, Ye J.-H, Ju T, Huang H, Liao L.-L, Yu D.-G. Nat. Commun. 2019; 10: 3592
- 47 Zhang B, Yi Y, Wu Z.-Q, Chen C, Xi C. Green Chem. 2020; 22: 5961
- 48 Yang Y, Lee J.-W. Chem. Sci. 2019; 10: 3905
- 49a Zhou W.-J, Wang Z.-H, Liao L.-L, Jiang Y.-X, Cao K.-G, Ju T, Li Y, Cao G.-M, Yu D.-G. Nat. Commun. 2020; 11: 3263
- 49b Huang H, Ye J.-H, Zhu L, Ran C.-K, Miao M, Wang W, Chen H, Zhou X.-Y, Lan Y, Yu B, Yu D.-G. CCS Chem. 2020; 2: 1746
- 50 Ju T, Zhou Y.-Q, Cao K.-G, Fu Q, Ye J.-H, Sun G.-Q, Liu X.-F, Chen L, Liao L.-L, Yu D.-G. Nat. Catal. 2021; 4: 304
- 51 Masuda Y, Ishida N, Murakami M. J. Am. Chem. Soc. 2015; 137: 14063
- 52 Seo H, Katcher MH, Jamison TF. Nat. Chem. 2017; 9: 453
- 53 Singh SB. Tetrahedron Lett. 1995; 36: 2009
- 54 Matsuoka S, Kohzuki T, Pac C, Ishida A, Takamuku S, Kusaba M, Nakashima N, Yanagida S. J. Phys. Chem. 1992; 96: 4437
- 55 McNally A, Prier CK, MacMillan DW. C. Science 2011; 334: 1114
- 56 Meng QY, Schirmer TE, Berger AL, Donabauer K, König B. J. Am. Chem. Soc. 2019; 141: 11393
- 57a Luo J, Zhang J. ACS Catal. 2016; 6: 873
- 57b Speckmeier E, Fischer TG, Zeitler K. J. Am. Chem. Soc. 2018; 140: 15353
- 58 Donabauer K, Maity M, Berger AL, Huff GS, Crespi S, König B. Chem. Sci. 2019; 10: 5162
- 59a Zhou R, Goh YY, Liu H, Tao H, Li L, Wu J. Angew. Chem. Int. Ed. 2017; 56: 16621
- 59b Dénès F, Pichowicz M, Povie G, Renaud P. Chem. Rev. 2014; 114: 2587
- 60 Cuthbertson JD, MacMillan DW. C. Nature 2015; 519: 74
- 61a Wayner DD. M, McPhee DJ, Griller D. J. Am. Chem. Soc. 1988; 110: 132
- 61b Sim BA, Griller D, Wayner DD. M. J. Am. Chem. Soc. 1989; 111: 754
- 62 Yoo W.-J, Kondo J, Rodríguez-Santamaría JA, Nguyen TV. Q, Kobayashi S. Angew. Chem. Int. Ed. 2019; 58: 6772